Lynch Heather J, Fagan William F
Department of Biology, University of Maryland, College Park, Maryland 20742, USA.
Ecology. 2009 Apr;90(4):1116-24. doi: 10.1890/08-0286.1.
Previous efforts to use the Euler equation to estimate maximum population growth rates (variously symbolized as either r, r(m), or r(max)) have used simplified models of survivorship that neglect differences in survivorship schedules among species. In particular, several recent analyses have used either an exponential model of survivorship or a step function model in which all individuals live until a fixed age of death. Using a flexible alternative based on the beta distribution and a compiled data set of mammalian survivorship curves for 58 species, we explore the influence of survivorship shape and scale on the estimation of r. We show that the Euler equation paired with an exponential model of survivorship can be used to calculate an unbiased estimate of r over a large range of body sizes, whereas the more commonly used step function survivorship model results in severely inflated estimates of r, especially for mammals with large maximum population growth rates. Finally, we demonstrate that, despite producing different absolute estimates of r, the three survivorship models examined yield similar allometric scaling coefficients relating r to biomass. These allometric scaling relationships are highly sensitive to the inclusion or exclusion of bats (Chiroptera), which exhibit life-history traits (long life spans, small litter sizes, and relatively long litter intervals) inconsistent with their small body size.
以往利用欧拉方程估算最大种群增长率(用不同符号表示为r、r(m)或r(max))的研究,使用的是简化的生存模型,忽略了物种间生存时间表的差异。特别是,最近的几项分析使用了指数生存模型或阶跃函数模型,即所有个体都活到固定的死亡年龄。我们基于贝塔分布使用了一种灵活的替代方法,并利用58种哺乳动物生存曲线的汇编数据集,探讨了生存形状和尺度对r估计的影响。我们表明,与指数生存模型相结合的欧拉方程可用于在大范围的体型上计算r的无偏估计,而更常用的阶跃函数生存模型会导致r的估计值严重膨胀,尤其是对于具有较大最大种群增长率的哺乳动物。最后,我们证明,尽管所研究的三种生存模型产生的r绝对估计值不同,但它们得出的将r与生物量相关联的异速生长比例系数相似。这些异速生长比例关系对蝙蝠(翼手目)的纳入或排除高度敏感,蝙蝠表现出与其小体型不一致的生活史特征(寿命长、产仔数少和产仔间隔相对较长)。