Suppr超能文献

用于产乙醇酵母5-羟甲基糠醛耐受性基因调控网络的离散动力系统建模

Discrete dynamical system modelling for gene regulatory networks of 5-hydroxymethylfurfural tolerance for ethanologenic yeast.

作者信息

Song M, Ouyang Z, Liu Z L

机构信息

Department of Computer Science, New Mexico State University, Las Cruces, NM 88003, USA.

出版信息

IET Syst Biol. 2009 May;3(3):203-18. doi: 10.1049/iet-syb.2008.0089.

Abstract

Composed of linear difference equations, a discrete dynamical system (DDS) model was designed to reconstruct transcriptional regulations in gene regulatory networks (GRNs) for ethanologenic yeast Saccharomyces cerevisiae in response to 5-hydroxymethylfurfural (HMF), a bioethanol conversion inhibitor. The modelling aims at identification of a system of linear difference equations to represent temporal interactions among significantly expressed genes. Power stability is imposed on a system model under the normal condition in the absence of the inhibitor. Non-uniform sampling, typical in a time-course experimental design, is addressed by a log-time domain interpolation. A statistically significant DDS model of the yeast GRN derived from time-course gene expression measurements by exposure to HMF, revealed several verified transcriptional regulation events. These events implicate Yap1 and Pdr3, transcription factors consistently known for their regulatory roles by other studies or postulated by independent sequence motif analysis, suggesting their involvement in yeast tolerance and detoxification of the inhibitor.

摘要

离散动力系统(DDS)模型由线性差分方程组成,旨在重建产乙醇酵母酿酒酵母基因调控网络(GRN)中响应生物乙醇转化抑制剂5-羟甲基糠醛(HMF)的转录调控。该建模旨在识别一个线性差分方程组,以表示显著表达基因之间的时间相互作用。在不存在抑制剂的正常条件下,系统模型具有幂稳定性。通过对数时域插值解决了时程实验设计中典型的非均匀采样问题。通过暴露于HMF的时程基因表达测量得出的酵母GRN的具有统计学意义的DDS模型,揭示了几个经过验证的转录调控事件。这些事件涉及Yap1和Pdr3,其他研究一直表明这两个转录因子具有调控作用,或者通过独立的序列基序分析推测它们具有调控作用,这表明它们参与了酵母对抑制剂的耐受性和解毒过程。

相似文献

6
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
Appl Microbiol Biotechnol. 2006 Nov;73(1):27-36. doi: 10.1007/s00253-006-0567-3. Epub 2006 Oct 7.
8
Evolutionarily engineered ethanologenic yeast detoxifies lignocellulosic biomass conversion inhibitors by reprogrammed pathways.
Mol Genet Genomics. 2009 Sep;282(3):233-44. doi: 10.1007/s00438-009-0461-7. Epub 2009 Jun 11.
9
Sample scale-free gene regulatory network using gene ontology.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:5523-6. doi: 10.1109/IEMBS.2006.259261.
10

引用本文的文献

本文引用的文献

1
Automated reverse engineering of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9943-8. doi: 10.1073/pnas.0609476104. Epub 2007 Jun 6.
3
Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite.
Physiol Genomics. 2007 Jun 19;30(1):35-43. doi: 10.1152/physiolgenomics.00236.2006. Epub 2007 Feb 27.
4
Universal external RNA controls for microbial gene expression analysis using microarray and qRT-PCR.
J Microbiol Methods. 2007 Mar;68(3):486-96. doi: 10.1016/j.mimet.2006.10.014. Epub 2006 Dec 14.
5
Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors.
Appl Microbiol Biotechnol. 2006 Nov;73(1):27-36. doi: 10.1007/s00253-006-0567-3. Epub 2006 Oct 7.
7
Modelling in molecular biology: describing transcription regulatory networks at different scales.
Philos Trans R Soc Lond B Biol Sci. 2006 Mar 29;361(1467):483-94. doi: 10.1098/rstb.2005.1806.
8
A methodology for the structural and functional analysis of signaling and regulatory networks.
BMC Bioinformatics. 2006 Feb 7;7:56. doi: 10.1186/1471-2105-7-56.
9
Generating Boolean networks with a prescribed attractor structure.
Bioinformatics. 2005 Nov 1;21(21):4021-5. doi: 10.1093/bioinformatics/bti664. Epub 2005 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验