Suppr超能文献

多参数回归生存模型中的惩罚变量选择。

Penalized variable selection in multi-parameter regression survival modeling.

机构信息

Department of Mathematics and Statistics, University of Limerick, Ireland.

Department of Statistics, Pukyong National University, Busan, South Korea.

出版信息

Stat Methods Med Res. 2023 Dec;32(12):2455-2471. doi: 10.1177/09622802231203322. Epub 2023 Oct 12.

Abstract

Standard survival models such as the proportional hazards model contain a single regression component, corresponding to the scale of the hazard. In contrast, we consider the so-called "multi-parameter regression" approach whereby covariates enter the model through multiple distributional parameters simultaneously, for example, scale and shape parameters. This approach has previously been shown to achieve flexibility with relatively low model complexity. However, beyond a stepwise type selection method, variable selection methods are underdeveloped in the multi-parameter regression survival modeling setting. Therefore, we propose penalized multi-parameter regression estimation procedures using the following penalties: least absolute shrinkage and selection operator, smoothly clipped absolute deviation, and adaptive least absolute shrinkage and selection operator. We compare these procedures using extensive simulation studies and an application to data from an observational lung cancer study; the Weibull multi-parameter regression model is used throughout as a running example.

摘要

标准生存模型,如比例风险模型,包含单个回归分量,对应于风险的比例。相比之下,我们考虑所谓的“多参数回归”方法,其中协变量通过多个分布参数同时进入模型,例如,规模和形状参数。这种方法已经被证明具有相对较低的模型复杂度的灵活性。然而,除了逐步式的选择方法外,在多参数回归生存建模环境中,变量选择方法还不够发达。因此,我们提出了使用以下惩罚项的惩罚多参数回归估计过程:最小绝对收缩和选择算子、平滑剪辑绝对偏差和自适应最小绝对收缩和选择算子。我们通过广泛的模拟研究和对观察性肺癌研究数据的应用来比较这些过程;威布尔多参数回归模型始终作为示例使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1fe6/10710000/999e8cc73957/10.1177_09622802231203322-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验