Suppr超能文献

多变量失效时间数据的变量选择

Variable selection for multivariate failure time data.

作者信息

Cai Jianwen, Fan Jianqing, Li Runze, Zhou Haibo

机构信息

Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7420, U.S.A.,

出版信息

Biometrika. 2005;92(2):303-316. doi: 10.1093/biomet/92.2.303.

Abstract

In this paper, we proposed a penalised pseudo-partial likelihood method for variable selection with multivariate failure time data with a growing number of regression coefficients. Under certain regularity conditions, we show the consistency and asymptotic normality of the penalised likelihood estimators. We further demonstrate that, for certain penalty functions with proper choices of regularisation parameters, the resulting estimator can correctly identify the true model, as if it were known in advance. Based on a simple approximation of the penalty function, the proposed method can be easily carried out with the Newton-Raphson algorithm. We conduct extensive Monte Carlo simulation studies to assess the finite sample performance of the proposed procedures. We illustrate the proposed method by analysing a dataset from the Framingham Heart Study.

摘要

在本文中,我们提出了一种惩罚伪偏似然方法,用于对具有不断增加的回归系数的多变量失效时间数据进行变量选择。在某些正则性条件下,我们证明了惩罚似然估计量的一致性和渐近正态性。我们进一步证明,对于某些惩罚函数,通过适当选择正则化参数,所得估计量能够正确识别真实模型,就好像它是事先已知的一样。基于惩罚函数的一个简单近似,所提出的方法可以很容易地通过牛顿-拉夫森算法来实现。我们进行了广泛的蒙特卡罗模拟研究,以评估所提出方法的有限样本性能。我们通过分析来自弗雷明汉心脏研究的一个数据集来说明所提出的方法。

相似文献

5
Variable selection for partially linear models via partial correlation.基于偏相关的部分线性模型变量选择
J Multivar Anal. 2018 Sep;167:18-434. doi: 10.1016/j.jmva.2018.06.005. Epub 2018 Jun 20.
7
Regularized robust estimation in binary regression models.二元回归模型中的正则化稳健估计
J Appl Stat. 2020 Sep 18;49(3):574-598. doi: 10.1080/02664763.2020.1822304. eCollection 2022.
9
Right-censored models by the expectile method.基于期望分位数方法的右删失模型。
Lifetime Data Anal. 2025 Jan;31(1):149-186. doi: 10.1007/s10985-024-09643-w. Epub 2025 Jan 3.

引用本文的文献

2
Testing and Confidence Intervals for High Dimensional Proportional Hazards Model.高维比例风险模型的检验与置信区间
J R Stat Soc Series B Stat Methodol. 2017 Nov;79(5):1415-1437. doi: 10.1111/rssb.12224. Epub 2016 Dec 26.
6
Bi-level variable selection for case-cohort studies with group variables.基于群组变量的病例-对照研究的双层变量选择。
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3404-3414. doi: 10.1177/0962280218803654. Epub 2018 Oct 11.
10
Group and within-group variable selection for competing risks data.竞争风险数据的组内和组间变量选择
Lifetime Data Anal. 2018 Jul;24(3):407-424. doi: 10.1007/s10985-017-9400-9. Epub 2017 Aug 4.

本文引用的文献

6
The lasso method for variable selection in the Cox model.Cox模型中用于变量选择的套索方法。
Stat Med. 1997 Feb 28;16(4):385-95. doi: 10.1002/(sici)1097-0258(19970228)16:4<385::aid-sim380>3.0.co;2-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验