Suppr超能文献

单组和多组惩罚因子分析:一种基于信赖域算法的方法,具有集成的自动多重调参选择。

Single- and Multiple-Group Penalized Factor Analysis: A Trust-Region Algorithm Approach with Integrated Automatic Multiple Tuning Parameter Selection.

机构信息

Department of Statistical Sciences, University of Bologna, Via Delle Belle Arti 41, 40126, Bologna, Italy.

Department of Statistical Science, University College London, London, UK.

出版信息

Psychometrika. 2021 Mar;86(1):65-95. doi: 10.1007/s11336-021-09751-8. Epub 2021 Mar 26.

Abstract

Penalized factor analysis is an efficient technique that produces a factor loading matrix with many zero elements thanks to the introduction of sparsity-inducing penalties within the estimation process. However, sparse solutions and stable model selection procedures are only possible if the employed penalty is non-differentiable, which poses certain theoretical and computational challenges. This article proposes a general penalized likelihood-based estimation approach for single- and multiple-group factor analysis models. The framework builds upon differentiable approximations of non-differentiable penalties, a theoretically founded definition of degrees of freedom, and an algorithm with integrated automatic multiple tuning parameter selection that exploits second-order analytical derivative information. The proposed approach is evaluated in two simulation studies and illustrated using a real data set. All the necessary routines are integrated into the R package penfa.

摘要

惩罚因子分析是一种有效的技术,通过在估计过程中引入稀疏诱导惩罚,可以得到一个具有许多零元素的因子载荷矩阵。然而,只有在使用的惩罚是非可微的情况下,稀疏解和稳定的模型选择过程才是可能的,这带来了一些理论和计算上的挑战。本文提出了一种用于单组和多组因子分析模型的基于惩罚似然的一般估计方法。该框架基于不可微惩罚的可微逼近、自由度的理论定义以及具有集成自动多调谐参数选择的算法,该算法利用二阶分析导数信息。该方法在两项模拟研究中进行了评估,并使用真实数据集进行了说明。所有必要的例程都集成到 R 包 penfa 中。

相似文献

8
Collaborative double robust targeted maximum likelihood estimation.协作双稳健靶向最大似然估计
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
10
Sparse and Simple Structure Estimation via Prenet Penalization.基于 prenet 惩罚的稀疏和简单结构估计。
Psychometrika. 2023 Dec;88(4):1381-1406. doi: 10.1007/s11336-022-09868-4. Epub 2022 May 23.

本文引用的文献

4
Sparse Exploratory Factor Analysis.稀疏探索性因子分析
Psychometrika. 2017 Jul 13. doi: 10.1007/s11336-017-9575-8.
5
A Penalized Likelihood Method for Structural Equation Modeling.惩罚似然法在结构方程模型中的应用。
Psychometrika. 2017 Jun;82(2):329-354. doi: 10.1007/s11336-017-9566-9. Epub 2017 Apr 17.
8
Regularized Structural Equation Modeling.正则化结构方程模型
Struct Equ Modeling. 2016;23(4):555-566. doi: 10.1080/10705511.2016.1154793. Epub 2016 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验