Nencka Andrew S, Hahn Andrew D, Rowe Daniel B
Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.
Image processing is common in functional magnetic resonance imaging (fMRI) and functional connectivity magnetic resonance imaging (fcMRI). Such processing may have deleterious effects on statistical maps computed from the processed images. In this manuscript, we describe a mathematical framework to evaluate the effects of image processing on observed voxel means, covariances and correlations resulting from linear processes on k-space and image-space data. We develop linear operators for common image processing operations, including: zero-filling, apodization, smoothing and partial Fourier reconstruction; and unmodeled physical processes, including: Fourier encoding anomalies caused by eddy currents, intra-acquisition decay and magnetic field inhomogeneities. With such operators, we theoretically compute the exact image-space means, covariances and correlations which result from their common implementation and verify their behavior in experimental phantom data. Thus, a very powerful framework is described to consider the effects of image processing on observed voxel means, covariances and correlations. With this framework, researchers can theoretically consider observed voxel correlations while understanding the extent of artifactual correlations resulting from image processing. Furthermore, this framework may be utilized in the future to theoretically optimize image acquisition parameters, and examine the order of image processing steps.
图像处理在功能磁共振成像(fMRI)和功能连接磁共振成像(fcMRI)中很常见。这种处理可能会对从处理后的图像计算出的统计图谱产生有害影响。在本手稿中,我们描述了一个数学框架,用于评估图像处理对k空间和图像空间数据上的线性过程所产生的观测体素均值、协方差和相关性的影响。我们为常见的图像处理操作开发了线性算子,包括:零填充、变迹、平滑和部分傅里叶重建;以及未建模的物理过程,包括:由涡流、采集内衰减和磁场不均匀性引起的傅里叶编码异常。利用这些算子,我们从理论上计算了它们常见实现所产生的精确图像空间均值、协方差和相关性,并在实验体模数据中验证了它们的行为。因此,我们描述了一个非常强大的框架来考虑图像处理对观测体素均值、协方差和相关性的影响。利用这个框架,研究人员在理解图像处理产生的伪相关性程度的同时,可以从理论上考虑观测体素相关性。此外,这个框架未来可用于从理论上优化图像采集参数,并检查图像处理步骤的顺序。