Suppr超能文献

一种用于理解k空间(AMMUST-k)预处理对功能磁共振成像(fcMRI)和磁共振成像(fMRI)中观察到的体素测量值的统计效应的数学模型。

A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI.

作者信息

Nencka Andrew S, Hahn Andrew D, Rowe Daniel B

机构信息

Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.

Abstract

Image processing is common in functional magnetic resonance imaging (fMRI) and functional connectivity magnetic resonance imaging (fcMRI). Such processing may have deleterious effects on statistical maps computed from the processed images. In this manuscript, we describe a mathematical framework to evaluate the effects of image processing on observed voxel means, covariances and correlations resulting from linear processes on k-space and image-space data. We develop linear operators for common image processing operations, including: zero-filling, apodization, smoothing and partial Fourier reconstruction; and unmodeled physical processes, including: Fourier encoding anomalies caused by eddy currents, intra-acquisition decay and magnetic field inhomogeneities. With such operators, we theoretically compute the exact image-space means, covariances and correlations which result from their common implementation and verify their behavior in experimental phantom data. Thus, a very powerful framework is described to consider the effects of image processing on observed voxel means, covariances and correlations. With this framework, researchers can theoretically consider observed voxel correlations while understanding the extent of artifactual correlations resulting from image processing. Furthermore, this framework may be utilized in the future to theoretically optimize image acquisition parameters, and examine the order of image processing steps.

摘要

图像处理在功能磁共振成像(fMRI)和功能连接磁共振成像(fcMRI)中很常见。这种处理可能会对从处理后的图像计算出的统计图谱产生有害影响。在本手稿中,我们描述了一个数学框架,用于评估图像处理对k空间和图像空间数据上的线性过程所产生的观测体素均值、协方差和相关性的影响。我们为常见的图像处理操作开发了线性算子,包括:零填充、变迹、平滑和部分傅里叶重建;以及未建模的物理过程,包括:由涡流、采集内衰减和磁场不均匀性引起的傅里叶编码异常。利用这些算子,我们从理论上计算了它们常见实现所产生的精确图像空间均值、协方差和相关性,并在实验体模数据中验证了它们的行为。因此,我们描述了一个非常强大的框架来考虑图像处理对观测体素均值、协方差和相关性的影响。利用这个框架,研究人员在理解图像处理产生的伪相关性程度的同时,可以从理论上考虑观测体素相关性。此外,这个框架未来可用于从理论上优化图像采集参数,并检查图像处理步骤的顺序。

相似文献

1
A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI.
J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.
2
Functional magnetic resonance imaging brain activation directly from k-space.
Magn Reson Imaging. 2009 Dec;27(10):1370-81. doi: 10.1016/j.mri.2009.05.048. Epub 2009 Jul 15.
3
A statistical examination of SENSE image reconstruction via an isomorphism representation.
Magn Reson Imaging. 2011 Nov;29(9):1267-87. doi: 10.1016/j.mri.2011.07.016. Epub 2011 Sep 9.
4
Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data.
Brain Connect. 2014 Nov;4(9):649-61. doi: 10.1089/brain.2014.0278. Epub 2014 Sep 19.
5
Quantifying the statistical impact of GRAPPA in fcMRI data with a real-valued isomorphism.
IEEE Trans Med Imaging. 2014 Feb;33(2):495-503. doi: 10.1109/TMI.2013.2288521. Epub 2013 Nov 6.
6
Bayesian merged utilization of GRAPPA and SENSE (BMUGS) for in-plane accelerated reconstruction increases fMRI detection power.
Magn Reson Imaging. 2025 Jan;115:110252. doi: 10.1016/j.mri.2024.110252. Epub 2024 Oct 16.
8
On the limitations of partial Fourier acquisition in phase-contrast MRI of turbulent kinetic energy.
Magn Reson Med. 2019 Jan;81(1):514-523. doi: 10.1002/mrm.27397. Epub 2018 Sep 28.
9
Signal and noise of Fourier reconstructed fMRI data.
J Neurosci Methods. 2007 Jan 30;159(2):361-9. doi: 10.1016/j.jneumeth.2006.07.022. Epub 2006 Sep 1.
10
Derivative encoding for parallel magnetic resonance imaging.
Med Phys. 2011 Oct;38(10):5582-9. doi: 10.1118/1.3633908.

引用本文的文献

1
A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data.
Magn Reson Imaging. 2024 Jun;109:271-285. doi: 10.1016/j.mri.2024.03.029. Epub 2024 Mar 26.
2
COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES.
Ann Appl Stat. 2018 Sep;12(3):1451-1478. doi: 10.1214/17-AOAS1117. Epub 2018 Sep 11.
3
3D-MB-MUSE: A robust 3D multi-slab, multi-band and multi-shot reconstruction approach for ultrahigh resolution diffusion MRI.
Neuroimage. 2017 Oct 1;159:46-56. doi: 10.1016/j.neuroimage.2017.07.035. Epub 2017 Jul 18.
4
Incorporating relaxivities to more accurately reconstruct MR images.
Magn Reson Imaging. 2015 May;33(4):374-84. doi: 10.1016/j.mri.2015.01.003. Epub 2015 Jan 15.
5
Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data.
Brain Connect. 2014 Nov;4(9):649-61. doi: 10.1089/brain.2014.0278. Epub 2014 Sep 19.

本文引用的文献

2
Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal.
Neuroimage. 2007 Nov 1;38(2):306-20. doi: 10.1016/j.neuroimage.2007.07.037. Epub 2007 Aug 9.
3
Signal and noise of Fourier reconstructed fMRI data.
J Neurosci Methods. 2007 Jan 30;159(2):361-9. doi: 10.1016/j.jneumeth.2006.07.022. Epub 2006 Sep 1.
4
Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI.
Neuroimage. 2006 Jul 15;31(4):1536-48. doi: 10.1016/j.neuroimage.2006.02.048. Epub 2006 Apr 24.
5
Modeling both the magnitude and phase of complex-valued fMRI data.
Neuroimage. 2005 May 1;25(4):1310-24. doi: 10.1016/j.neuroimage.2005.01.034.
6
Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model.
Neuroimage. 2005 Jan 15;24(2):603-6. doi: 10.1016/j.neuroimage.2004.09.038. Epub 2004 Nov 18.
7
A complex way to compute fMRI activation.
Neuroimage. 2004 Nov;23(3):1078-92. doi: 10.1016/j.neuroimage.2004.06.042.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验