Suppr超能文献

非任务功能磁共振成像数据时空处理的统计效应量化

Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data.

作者信息

Karaman Muge, Nencka Andrew S, Bruce Iain P, Rowe Daniel B

机构信息

1 Department of Mathematics, Statistics, and Computer Science, Marquette University , Milwaukee, Wisconsin.

出版信息

Brain Connect. 2014 Nov;4(9):649-61. doi: 10.1089/brain.2014.0278. Epub 2014 Sep 19.

Abstract

Nontask functional magnetic resonance imaging (fMRI) has become one of the most popular noninvasive areas of brain mapping research for neuroscientists. In nontask fMRI, various sources of "noise" corrupt the measured blood oxygenation level-dependent signal. Many studies have aimed to attenuate the noise in reconstructed voxel measurements through spatial and temporal processing operations. While these solutions make the data more "appealing," many commonly used processing operations induce artificial correlations in the acquired data. As such, it becomes increasingly more difficult to derive the true underlying covariance structure once the data have been processed. As the goal of nontask fMRI studies is to determine, utilize, and analyze the true covariance structure of acquired data, such processing can lead to inaccurate and misleading conclusions drawn from the data if they are unaccounted for in the final connectivity analysis. In this article, we develop a framework that represents the spatiotemporal processing and reconstruction operations as linear operators, providing a means of precisely quantifying the correlations induced or modified by such processing rather than by performing lengthy Monte Carlo simulations. A framework of this kind allows one to appropriately model the statistical properties of the processed data, optimize the data processing pipeline, characterize excessive processing, and draw more accurate functional connectivity conclusions.

摘要

非任务功能磁共振成像(fMRI)已成为神经科学家进行脑图谱研究最受欢迎的非侵入性领域之一。在非任务fMRI中,各种“噪声”源会干扰所测量的血氧水平依赖信号。许多研究旨在通过空间和时间处理操作来减弱重建体素测量中的噪声。虽然这些解决方案使数据更具“吸引力”,但许多常用的处理操作会在采集的数据中引入人为相关性。因此,一旦数据经过处理,就越来越难以得出真正的潜在协方差结构。由于非任务fMRI研究的目标是确定、利用和分析采集数据的真正协方差结构,如果在最终的连通性分析中没有考虑到这些处理,那么这种处理可能会导致从数据中得出不准确和误导性的结论。在本文中,我们开发了一个框架,将时空处理和重建操作表示为线性算子,提供了一种精确量化此类处理所诱导或修改的相关性的方法,而不是通过执行冗长的蒙特卡罗模拟。这种框架允许人们适当地对处理后的数据的统计特性进行建模,优化数据处理管道,表征过度处理,并得出更准确的功能连通性结论。

相似文献

1
Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data.
Brain Connect. 2014 Nov;4(9):649-61. doi: 10.1089/brain.2014.0278. Epub 2014 Sep 19.
2
Quantifying the statistical impact of GRAPPA in fcMRI data with a real-valued isomorphism.
IEEE Trans Med Imaging. 2014 Feb;33(2):495-503. doi: 10.1109/TMI.2013.2288521. Epub 2013 Nov 6.
3
A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI.
J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.
4
Functional magnetic resonance imaging brain activation directly from k-space.
Magn Reson Imaging. 2009 Dec;27(10):1370-81. doi: 10.1016/j.mri.2009.05.048. Epub 2009 Jul 15.
5
Quantifying functional connectivity in multi-subject fMRI data using component models.
Hum Brain Mapp. 2017 Feb;38(2):882-899. doi: 10.1002/hbm.23425. Epub 2016 Oct 14.
8
Connecting mean field models of neural activity to EEG and fMRI data.
Brain Topogr. 2010 Jun;23(2):139-49. doi: 10.1007/s10548-010-0140-3. Epub 2010 Apr 4.
9
Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach.
Brain Topogr. 2012 Jan;25(1):27-38. doi: 10.1007/s10548-011-0187-9. Epub 2011 May 6.
10
Constructing fMRI connectivity networks: a whole brain functional parcellation method for node definition.
J Neurosci Methods. 2014 May 15;228:86-99. doi: 10.1016/j.jneumeth.2014.03.004. Epub 2014 Mar 25.

引用本文的文献

1
A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data.
Magn Reson Imaging. 2024 Jun;109:271-285. doi: 10.1016/j.mri.2024.03.029. Epub 2024 Mar 26.
2
Double-wavelet transform for multisubject task-induced functional magnetic resonance imaging data.
Biometrics. 2019 Sep;75(3):1029-1040. doi: 10.1111/biom.13055. Epub 2019 Apr 17.
3
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 2019 Jan;16(1):111-116. doi: 10.1038/s41592-018-0235-4. Epub 2018 Dec 10.
4
COMPLEX-VALUED TIME SERIES MODELING FOR IMPROVED ACTIVATION DETECTION IN FMRI STUDIES.
Ann Appl Stat. 2018 Sep;12(3):1451-1478. doi: 10.1214/17-AOAS1117. Epub 2018 Sep 11.
5
Incorporating relaxivities to more accurately reconstruct MR images.
Magn Reson Imaging. 2015 May;33(4):374-84. doi: 10.1016/j.mri.2015.01.003. Epub 2015 Jan 15.

本文引用的文献

1
Quantifying the statistical impact of GRAPPA in fcMRI data with a real-valued isomorphism.
IEEE Trans Med Imaging. 2014 Feb;33(2):495-503. doi: 10.1109/TMI.2013.2288521. Epub 2013 Nov 6.
3
Physiologic noise regression, motion regression, and TOAST dynamic field correction in complex-valued fMRI time series.
Neuroimage. 2012 Feb 1;59(3):2231-40. doi: 10.1016/j.neuroimage.2011.09.082. Epub 2011 Oct 7.
4
A statistical examination of SENSE image reconstruction via an isomorphism representation.
Magn Reson Imaging. 2011 Nov;29(9):1267-87. doi: 10.1016/j.mri.2011.07.016. Epub 2011 Sep 9.
5
Complex and magnitude-only preprocessing of 2D and 3D BOLD fMRI data at 7 T.
Magn Reson Med. 2012 Mar;67(3):867-71. doi: 10.1002/mrm.23072. Epub 2011 Jul 11.
6
Modeling the spatial and temporal dependence in FMRI data.
Biometrics. 2010 Sep;66(3):949-57. doi: 10.1111/j.1541-0420.2009.01355.x.
7
A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI.
J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.
8
Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration.
Neuroimage. 2009 Jul 1;46(3):786-802. doi: 10.1016/j.neuroimage.2008.12.037. Epub 2009 Jan 13.
10
Integrated local correlation: a new measure of local coherence in fMRI data.
Hum Brain Mapp. 2009 Jan;30(1):13-23. doi: 10.1002/hbm.20482.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验