Suppr超能文献

功能磁共振成像的大脑激活直接从 k 空间。

Functional magnetic resonance imaging brain activation directly from k-space.

机构信息

Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.

出版信息

Magn Reson Imaging. 2009 Dec;27(10):1370-81. doi: 10.1016/j.mri.2009.05.048. Epub 2009 Jul 15.

Abstract

In functional magnetic resonance imaging (fMRI), the process of determining statistically significant brain activation is commonly performed in terms of voxel time series measurements after image reconstruction and magnitude-only time series formation. The image reconstruction and statistical activation processes are treated separately. In this manuscript, a framework is developed so that statistical analysis is performed in terms of the original, prereconstruction, complex-valued k-space measurements. First, the relationship between complex-valued (Fourier) encoded k-space measurements and complex-valued image measurements from (Fourier) reconstructed images is reviewed. Second, the voxel time series measurements are written in terms of the original spatiotemporal k-space measurements utilizing this k-space and image relationship. Finally, voxelwise fMRI activation can be determined in image space in terms of the original k-space measurements. Additionally, the spatiotemporal covariance between reconstructed complex-valued voxel time series can be written in terms of the spatiotemporal covariance between complex-valued k-space measurements. This allows one to utilize the originally measured data in its more natural, acquired state rather than in a transformed state. The effects of modeling preprocessing in k-space on voxel activation and correlation can then be examined.

摘要

在功能磁共振成像(fMRI)中,通常在图像重建和幅度仅时间序列形成之后,根据体素时间序列测量值来进行确定统计上显著的脑激活的过程。图像重建和统计激活过程是分开处理的。在本文中,开发了一个框架,以便根据原始的、重建前的、复数 k 空间测量值进行统计分析。首先,回顾了复数(傅里叶)编码 k 空间测量值与(傅里叶)重建图像中的复数图像测量值之间的关系。其次,利用该 k 空间和图像关系,将体素时间序列测量值表示为原始的时-空 k 空间测量值。最后,可以根据原始的 k 空间测量值在图像空间中确定体素水平的 fMRI 激活。此外,复数体素时间序列的重建后时空协方差可以表示为复数 k 空间测量值的时空协方差。这允许利用原始测量数据在其更自然的、采集的状态,而不是在转换的状态。然后可以检查在 k 空间中对预处理进行建模对体素激活和相关性的影响。

相似文献

1
Functional magnetic resonance imaging brain activation directly from k-space.
Magn Reson Imaging. 2009 Dec;27(10):1370-81. doi: 10.1016/j.mri.2009.05.048. Epub 2009 Jul 15.
2
A Mathematical Model for Understanding the STatistical effects of k-space (AMMUST-k) preprocessing on observed voxel measurements in fcMRI and fMRI.
J Neurosci Methods. 2009 Jul 30;181(2):268-82. doi: 10.1016/j.jneumeth.2009.05.007. Epub 2009 May 20.
3
Signal and noise of Fourier reconstructed fMRI data.
J Neurosci Methods. 2007 Jan 30;159(2):361-9. doi: 10.1016/j.jneumeth.2006.07.022. Epub 2006 Sep 1.
4
Incorporating relaxivities to more accurately reconstruct MR images.
Magn Reson Imaging. 2015 May;33(4):374-84. doi: 10.1016/j.mri.2015.01.003. Epub 2015 Jan 15.
5
A statistical examination of SENSE image reconstruction via an isomorphism representation.
Magn Reson Imaging. 2011 Nov;29(9):1267-87. doi: 10.1016/j.mri.2011.07.016. Epub 2011 Sep 9.
6
Derivative encoding for parallel magnetic resonance imaging.
Med Phys. 2011 Oct;38(10):5582-9. doi: 10.1118/1.3633908.
7
Fat/water separation in k-space with real-valued estimates and its combination with POCS.
Magn Reson Med. 2020 Feb;83(2):653-661. doi: 10.1002/mrm.27949. Epub 2019 Aug 16.
8
Quantification of the statistical effects of spatiotemporal processing of nontask FMRI data.
Brain Connect. 2014 Nov;4(9):649-61. doi: 10.1089/brain.2014.0278. Epub 2014 Sep 19.
10
Quantifying the statistical impact of GRAPPA in fcMRI data with a real-valued isomorphism.
IEEE Trans Med Imaging. 2014 Feb;33(2):495-503. doi: 10.1109/TMI.2013.2288521. Epub 2013 Nov 6.

引用本文的文献

1
Efficient fully Bayesian approach to brain activity mapping with complex-valued fMRI data.
J Appl Stat. 2024 Nov 4;52(6):1299-1314. doi: 10.1080/02664763.2024.2422392. eCollection 2025.
2
A fully Bayesian approach for comprehensive mapping of magnitude and phase brain activation in complex-valued fMRI data.
Magn Reson Imaging. 2024 Jun;109:271-285. doi: 10.1016/j.mri.2024.03.029. Epub 2024 Mar 26.
3
Enhanced phase regression with Savitzky-Golay filtering for high-resolution BOLD fMRI.
Hum Brain Mapp. 2014 Aug;35(8):3832-40. doi: 10.1002/hbm.22440. Epub 2014 Jan 17.

本文引用的文献

1
NMR Fourier zeugmatography. 1975.
J Magn Reson. 2011 Dec;213(2):495-509. doi: 10.1016/j.jmr.2011.09.019.
2
An evaluation of spatial thresholding techniques in fMRI analysis.
Hum Brain Mapp. 2008 Dec;29(12):1379-89. doi: 10.1002/hbm.20471.
3
Characterizing phase-only fMRI data with an angular regression model.
J Neurosci Methods. 2007 Apr 15;161(2):331-41. doi: 10.1016/j.jneumeth.2006.10.024. Epub 2006 Dec 8.
4
Signal and noise of Fourier reconstructed fMRI data.
J Neurosci Methods. 2007 Jan 30;159(2):361-9. doi: 10.1016/j.jneumeth.2006.07.022. Epub 2006 Sep 1.
5
Modeling both the magnitude and phase of complex-valued fMRI data.
Neuroimage. 2005 May 1;25(4):1310-24. doi: 10.1016/j.neuroimage.2005.01.034.
6
Parameter estimation in the magnitude-only and complex-valued fMRI data models.
Neuroimage. 2005 May 1;25(4):1124-32. doi: 10.1016/j.neuroimage.2004.12.048.
7
Complex fMRI analysis with unrestricted phase is equivalent to a magnitude-only model.
Neuroimage. 2005 Jan 15;24(2):603-6. doi: 10.1016/j.neuroimage.2004.09.038. Epub 2004 Nov 18.
8
A complex way to compute fMRI activation.
Neuroimage. 2004 Nov;23(3):1078-92. doi: 10.1016/j.neuroimage.2004.06.042.
9
An evaluation of thresholding techniques in fMRI analysis.
Neuroimage. 2004 May;22(1):95-108. doi: 10.1016/j.neuroimage.2003.12.047.
10
Generalized likelihood ratio detection for fMRI using complex data.
IEEE Trans Med Imaging. 1999 Apr;18(4):320-9. doi: 10.1109/42.768841.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验