Suppr超能文献

人纺锤体蛋白对动粒相关动力蛋白及纺锤体定向的有丝分裂控制

Mitotic control of kinetochore-associated dynein and spindle orientation by human Spindly.

作者信息

Chan Ying Wai, Fava Luca L, Uldschmid Andreas, Schmitz Michael H A, Gerlich Daniel W, Nigg Erich A, Santamaria Anna

机构信息

Department of Cell Biology, Max Planck Institute of Biochemistry, D-82152 Martinsried, Germany.

出版信息

J Cell Biol. 2009 Jun 1;185(5):859-74. doi: 10.1083/jcb.200812167. Epub 2009 May 25.

Abstract

Mitotic spindle formation and chromosome segregation depend critically on kinetochore-microtubule (KT-MT) interactions. A new protein, termed Spindly in Drosophila and SPDL-1 in C. elegans, was recently shown to regulate KT localization of dynein, but depletion phenotypes revealed striking differences, suggesting evolutionarily diverse roles of mitotic dynein. By characterizing the function of Spindly in human cells, we identify specific functions for KT dynein. We show that localization of human Spindly (hSpindly) to KTs is controlled by the Rod/Zw10/Zwilch (RZZ) complex and Aurora B. hSpindly depletion results in reduced inter-KT tension, unstable KT fibers, an extensive prometaphase delay, and severe chromosome misalignment. Moreover, depletion of hSpindly induces a striking spindle rotation, which can be rescued by co-depletion of dynein. However, in contrast to Drosophila, hSpindly depletion does not abolish the removal of MAD2 and ZW10 from KTs. Collectively, our data reveal hSpindly-mediated dynein functions and highlight a critical role of KT dynein in spindle orientation.

摘要

有丝分裂纺锤体的形成和染色体分离关键依赖于动粒-微管(KT-MT)相互作用。一种新蛋白质,在果蝇中称为Spindly,在秀丽隐杆线虫中称为SPDL-1,最近被证明可调节动力蛋白在动粒的定位,但缺失表型显示出显著差异,这表明有丝分裂动力蛋白在进化上具有不同的作用。通过表征Spindly在人类细胞中的功能,我们确定了动粒动力蛋白的特定功能。我们表明,人类Spindly(hSpindly)定位于动粒受Rod/Zw10/Zwilch(RZZ)复合体和极光激酶B控制。hSpindly缺失导致动粒间张力降低、动粒纤维不稳定、前期显著延迟以及严重的染色体排列错误。此外,hSpindly缺失会诱导明显的纺锤体旋转,这可以通过动力蛋白的共同缺失来挽救。然而,与果蝇不同,hSpindly缺失并不会消除MAD2和ZW10从动粒上的移除。总体而言,我们的数据揭示了hSpindly介导的动力蛋白功能,并突出了动粒动力蛋白在纺锤体定向中的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c7/2711594/a1bc7a371eff/JCB_200812167R_RGB_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验