School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
Mol Cell Proteomics. 2009 Aug;8(8):1999-2010. doi: 10.1074/mcp.M900081-MCP200. Epub 2009 May 26.
We describe here a novel footprinting technique to probe the in vivo structural dynamics of membrane protein. This method utilized in situ generation of hydroxyl radicals to oxidize and covalently modify biomolecules on living Escherichia coli cell surface. After enriching and purifying the membrane proteome, the modified amino acid residues of the protein were identified with tandem mass spectrometry to map the solvent-accessible surface of the protein that will form the footprint of in vivo structure of the protein. Of about 100 outer membrane proteins identified, we investigated the structure details of a typical beta-barrel structure, the porin OmpF. We found that six modified tryptic peptides of OmpF were reproducibly detected with 19 amino acids modified under the physiological condition. The modified amino acid residues were widely distributed in the external loop area, beta-strands, and periplasmic turning area, and all of them were validated as solvent-accessible according to the crystallography data. We further extended this method to study the dynamics of the voltage gating of OmpF in vivo using mimic changes of physiological circumstance either by pH or by ionic strength. Our data showed the voltage gating of porin OmpF in vivo for the first time and supported the proposed mechanism that the local electrostatic field changes in the eyelet region may alter the porin channels to switch. Thus, this novel method can be a potentially efficient method to study the structural dynamics of the membrane proteins of a living cell.
我们在这里描述了一种新的足迹探测技术,用于研究膜蛋白的体内结构动力学。该方法利用原位生成的羟基自由基氧化和共价修饰活大肠杆菌细胞表面的生物分子。在富集和纯化膜蛋白组后,通过串联质谱鉴定蛋白质的修饰氨基酸残基,以绘制蛋白质的溶剂可及表面,该表面将形成蛋白质体内结构的足迹。在鉴定出的大约 100 种外膜蛋白中,我们研究了一种典型的β桶结构——孔蛋白 OmpF 的结构细节。我们发现,在生理条件下,OmpF 的六个修饰的胰蛋白酶肽被重复检测到有 19 个氨基酸被修饰。修饰的氨基酸残基广泛分布在外部环区域、β-链和周质转弯区域,根据晶体学数据,所有这些残基都被验证为溶剂可及的。我们进一步扩展了这种方法,通过模拟生理环境的变化,如 pH 值或离子强度,来研究 OmpF 体内电压门控的动力学。我们的数据首次显示了 OmpF 孔蛋白在体内的电压门控,并支持了局部静电场变化可能改变孔道开关的拟议机制。因此,这种新方法可能是研究活细胞中膜蛋白结构动力学的一种有效方法。