Suppr超能文献

用于细胞亚硝(基)化反应的化学模型系统。

Chemical model systems for cellular nitros(yl)ation reactions.

机构信息

Second Medical Clinic, Department of Cardiology, Johannes Gutenberg University, 55101 Mainz, Germany.

出版信息

Free Radic Biol Med. 2009 Aug 15;47(4):458-67. doi: 10.1016/j.freeradbiomed.2009.05.019. Epub 2009 May 27.

Abstract

S-nitros(yl)ation belongs to the redox-based posttranslational modifications of proteins but the underlying chemistry is controversial. In contrast to current concepts involving the autoxidation of nitric oxide ((.)NO, nitrogen monoxide), we and others have proposed the formation of peroxynitrite (oxoperoxonitrate (1(-))as an essential intermediate. This requires low cellular fluxes of (.)NO and superoxide (UO2(-)), for which model systems have been introduced. We here propose two new systems for nitros(yl)ation that avoid the shortcomings of previous models. Based on the thermal decomposition of 3-morpholinosydnonimine,equal fluxes of (.)NO and UO2(-) were generated and modulated by the addition of (.)NO donors or Cu,Zn superoxide dismutase. As reactants for S-nitros(yl)ation, NADP+-dependent isocitrate dehydrogenase and glutathione were employed, for which optimal S-nitros(yl)ation was observed at nanomolar fluxes of (.)NO and UO2(-) at a ratio of about 3:1. The previously used reactants phenol and diaminonaphthalene (C- and Nnitrosation)demonstrated potential participation of multiple pathways for nitros(yl)ation. According to our data, neither peroxynitrite nor autoxidation of UNO was as efficient as the 3 (.)NO/1 UO2(-) system in mediating S-nitros(yl)ation. In theory this could lead to an elusive nitrosonium (nitrosyl cation)-like species in the first step and to N2O3 in the subsequent reaction. Which of these two species or whether both together will participate in biological S-nitros(yl)ation remains to be elucidated. Finally, we developed several hypothetical scenarios to which the described (.)NO/UO2-flux model could apply, providing conditions that allow either direct electrophilic substitution at a thiolate or S-nitros(yl)ation via transnitrosation from S-nitrosoglutathione.

摘要

S-亚硝基化属于蛋白质的氧化还原后翻译修饰,但基础化学仍存在争议。与当前涉及一氧化氮(NO)自动氧化的概念相反,我们和其他人提出过过氧亚硝酸盐(oxoperoxonitrate (1(-)))的形成作为一个重要的中间产物。这需要细胞内 NO 和超氧化物(UO2(-))的低通量,为此已经引入了模型系统。我们在此提出了两个新的亚硝基化系统,避免了先前模型的缺点。基于 3-吗啉代-sydnonimine 的热分解,通过添加 NO 供体或 Cu,Zn 超氧化物歧化酶,生成了相等通量的 NO 和 UO2(-),并对其进行了调节。作为 S-亚硝基化的反应物,使用了 NADP+-依赖性异柠檬酸脱氢酶和谷胱甘肽,在 NO 和 UO2(-)的纳米通量比约为 3:1 时,观察到最佳的 S-亚硝基化。先前使用的反应物苯酚和二氨基萘(C-和 N-亚硝化)表明亚硝基化可能涉及多种途径。根据我们的数据,过氧亚硝酸盐或 UNO 的自动氧化都不如 3(.)NO/1UO2(-)系统有效地介导 S-亚硝基化。从理论上讲,这可能导致在第一步中形成难以捉摸的硝酰阳离子(nitrosyl cation)样物质,随后反应生成 N2O3。这些物质中的哪一种或两者是否都会参与生物 S-亚硝基化仍有待阐明。最后,我们提出了几种假设情况,其中描述的(.)NO/UO2-通量模型可能适用,提供了允许硫醇盐直接亲电取代或通过 S-亚硝基谷胱甘肽的反式亚硝基化进行 S-亚硝基化的条件。

相似文献

1
Chemical model systems for cellular nitros(yl)ation reactions.用于细胞亚硝(基)化反应的化学模型系统。
Free Radic Biol Med. 2009 Aug 15;47(4):458-67. doi: 10.1016/j.freeradbiomed.2009.05.019. Epub 2009 May 27.

引用本文的文献

本文引用的文献

4
5
The glutathione thiyl radical does not react with nitrogen monoxide.谷胱甘肽硫自由基不与一氧化氮发生反应。
Biochem Biophys Res Commun. 2007 Aug 17;360(1):146-8. doi: 10.1016/j.bbrc.2007.06.008. Epub 2007 Jun 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验