Suppr超能文献

我们能从空中识别出一个社区吗?定义加纳阿克拉的社区结构。

Can we spot a neighborhood from the air? Defining neighborhood structure in Accra, Ghana.

作者信息

Weeks John R, Hill Allan, Stow Douglas, Getis Arthur, Fugate Debbie

机构信息

San Diego State University, 5500 Campanile Drive, San Diego, CA, USA, e-mail:

出版信息

GeoJournal. 2007;69(1-2):9-22. doi: 10.1007/s10708-007-9098-4.

Abstract

Slums are home to a large fraction of urban residents in cities of developing nations, but little attempt has been made to go beyond a simple slum/non-slum dichotomy, nor to identify slums more quantitatively than through local reputation. We use census data from Accra, Ghana, to create an index that applies the UN-Habitat criteria for a place to be a slum. We use this index to identify neighborhoods on a continuum of slum characteristics and on that basis are able to locate the worst slums in Accra. These do include the areas with a local reputation for being slums, lending qualitative validation to the index. We show that slums also have footprints that can be identified from data classified from satellite imagery. However, variability among slums in Accra is also associated with some variability in the land cover characteristics of slums.

摘要

在发展中国家的城市中,贫民窟是很大一部分城市居民的家园,但除了简单的贫民窟/非贫民窟二分法之外,几乎没有进行过其他尝试,也没有比通过当地声誉更定量地识别贫民窟。我们使用来自加纳阿克拉的人口普查数据,创建了一个应用联合国人居署关于一个地方成为贫民窟标准的指数。我们使用这个指数来识别具有连续贫民窟特征的社区,并在此基础上找出阿克拉最糟糕的贫民窟。这些确实包括那些在当地以贫民窟闻名的地区,从而为该指数提供了定性验证。我们表明,贫民窟也有可以从卫星图像分类数据中识别出来的足迹。然而,阿克拉贫民窟之间的差异也与贫民窟土地覆盖特征的一些差异有关。

相似文献

引用本文的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验