Suppr超能文献

OXA-1β-内酰胺酶活性位点的羧基赖氨酸(K70)发生突变会导致一种脱酰化缺陷型酶。

Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme.

作者信息

Schneider Kyle D, Bethel Christopher R, Distler Anne M, Hujer Andrea M, Bonomo Robert A, Leonard David A

机构信息

Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, USA.

出版信息

Biochemistry. 2009 Jul 7;48(26):6136-45. doi: 10.1021/bi900448u.

Abstract

Class D beta-lactamases hydrolyze beta-lactam antibiotics by using an active site serine nucleophile to form a covalent acyl-enzyme intermediate and subsequently employ water to deacylate the beta-lactam and release product. Class D beta-lactamases are carboxylated on the epsilon-amino group of an active site lysine, with the resulting carbamate functional group serving as a general base. We discovered that substitutions of the active site serine and lysine in OXA-1 beta-lactamase, a monomeric class D enzyme, significantly disrupt catalytic turnover. Substitution of glycine for the nucleophilic serine (S67G) results in an enzyme that can still bind substrate but is unable to form a covalent acyl-enzyme intermediate. Substitution of the carboxylated lysine (K70), on the other hand, results in enzyme that can be acylated by substrate but is impaired with respect to deacylation. We employed the fluorescent penicillin BOCILLIN FL to show that three different substitutions for K70 (alanine, aspartate, and glutamate) lead to the accumulation of significant acyl-enzyme intermediate. Interestingly, BOCILLIN FL deacylation rates (t(1/2)) vary depending on the identity of the substituting residue, from approximately 60 min for K70A to undetectable deacylation for K70D. Tryptophan fluorescence spectroscopy was used to confirm that these results are applicable to natural (i.e., nonfluorescent) substrates. Deacylation by K70A, but not K70D or K70E, can be partially restored by the addition of short-chain carboxylic acid mimetics of the lysine carbamate. In conclusion, we establish the functional role of the carboxylated lysine in OXA-1 and highlight its specific role in acylation and deacylation.

摘要

D类β-内酰胺酶通过利用活性位点的丝氨酸亲核试剂水解β-内酰胺抗生素,形成共价酰基-酶中间体,随后利用水使β-内酰胺脱酰基并释放产物。D类β-内酰胺酶在活性位点赖氨酸的ε-氨基上发生羧化,产生的氨基甲酸酯官能团作为通用碱。我们发现,在单体D类酶OXA-1β-内酰胺酶中,活性位点丝氨酸和赖氨酸的取代会显著破坏催化周转。用甘氨酸取代亲核丝氨酸(S67G)会产生一种仍能结合底物但无法形成共价酰基-酶中间体的酶。另一方面,羧化赖氨酸(K70)的取代会产生一种可被底物酰化但脱酰基受损的酶。我们使用荧光青霉素BOCILLIN FL表明,K70的三种不同取代(丙氨酸、天冬氨酸和谷氨酸)会导致大量酰基-酶中间体的积累。有趣的是,BOCILLIN FL的脱酰基速率(t(1/2))因取代残基的不同而有所变化,从K70A的约60分钟到K70D的无法检测到脱酰基。使用色氨酸荧光光谱法证实这些结果适用于天然(即非荧光)底物。添加赖氨酸氨基甲酸酯的短链羧酸模拟物可部分恢复K70A的脱酰基作用,但不能恢复K70D或K70E的脱酰基作用。总之,我们确定了OXA-1中羧化赖氨酸的功能作用,并突出了其在酰化和脱酰基中的特定作用。

相似文献

3
KPC-2 β-lactamase enables carbapenem antibiotic resistance through fast deacylation of the covalent intermediate.
J Biol Chem. 2021 Jan-Jun;296:100155. doi: 10.1074/jbc.RA120.015050. Epub 2020 Dec 10.
5
Class D β-lactamases: a reappraisal after five decades.
Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. Epub 2013 Jul 31.
8
Structural and biochemical evidence that a TEM-1 beta-lactamase N170G active site mutant acts via substrate-assisted catalysis.
J Biol Chem. 2009 Nov 27;284(48):33703-12. doi: 10.1074/jbc.M109.053819. Epub 2009 Oct 6.
9
A fluorescent carbapenem for structure function studies of penicillin-binding proteins, β-lactamases, and β-lactam sensors.
Anal Biochem. 2014 Oct 15;463:70-4. doi: 10.1016/j.ab.2014.07.012. Epub 2014 Jul 21.
10
Penicillin sulfone inhibitors of class D beta-lactamases.
Antimicrob Agents Chemother. 2010 Apr;54(4):1414-24. doi: 10.1128/AAC.00743-09. Epub 2010 Jan 19.

引用本文的文献

1
SAND: a comprehensive annotation of class D β-lactamases using structural alignment-based numbering.
Antimicrob Agents Chemother. 2025 Jul 2;69(7):e0015025. doi: 10.1128/aac.00150-25. Epub 2025 May 27.
2
An Ion-Pair Induced Intermediate Complex Captured in Class D Carbapenemase Reveals Chloride Ion as a Janus Effector Modulating Activity.
ACS Cent Sci. 2023 Dec 13;9(12):2339-2349. doi: 10.1021/acscentsci.3c00609. eCollection 2023 Dec 27.
3
Two non-active site residues W165 and L166 prominently influence the beta-lactam hydrolytic ability of OXA-23 beta-lactamase.
J Antibiot (Tokyo). 2023 Aug;76(8):489-498. doi: 10.1038/s41429-023-00624-z. Epub 2023 Apr 24.
4
A review on the mechanistic details of OXA enzymes of ESKAPE pathogens.
Pathog Glob Health. 2023 May;117(3):219-234. doi: 10.1080/20477724.2022.2088496. Epub 2022 Jun 26.
5
β-Lactam antibiotic targets and resistance mechanisms: from covalent inhibitors to substrates.
RSC Med Chem. 2021 Aug 4;12(10):1623-1639. doi: 10.1039/d1md00200g. eCollection 2021 Oct 20.
8
Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in .
Int J Mol Sci. 2020 Jul 18;21(14):5090. doi: 10.3390/ijms21145090.
10
β-Lactamases and β-Lactamase Inhibitors in the 21st Century.
J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub 2019 Apr 5.

本文引用的文献

2
Efficient inhibition of class A and class D beta-lactamases by Michaelis complexes.
J Biol Chem. 2007 Jul 27;282(30):21588-91. doi: 10.1074/jbc.C700080200. Epub 2007 Jun 8.
4
Discrete steps in sensing of beta-lactam antibiotics by the BlaR1 protein of the methicillin-resistant Staphylococcus aureus bacterium.
Proc Natl Acad Sci U S A. 2006 Jul 11;103(28):10630-5. doi: 10.1073/pnas.0601971103. Epub 2006 Jun 30.
5
The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
J Am Chem Soc. 2006 Mar 8;128(9):2970-6. doi: 10.1021/ja056806m.
7
Kinetic properties of four plasmid-mediated AmpC beta-lactamases.
Antimicrob Agents Chemother. 2005 Oct;49(10):4240-6. doi: 10.1128/AAC.49.10.4240-4246.2005.
9
Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
Acta Crystallogr D Biol Crystallogr. 2005 Aug;61(Pt 8):1072-9. doi: 10.1107/S0907444905014356. Epub 2005 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验