Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
Antimicrob Agents Chemother. 2010 Apr;54(4):1414-24. doi: 10.1128/AAC.00743-09. Epub 2010 Jan 19.
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
OXA 类β-内酰胺酶在不动杆菌属和铜绿假单胞菌中对β-内酰胺类抗生素的耐药性起主要作用,这两种菌是最难治疗的医院获得性病原体。通常,临床应用的β-内酰胺酶抑制剂(克拉维酸、舒巴坦和他唑巴坦)对 D 类β-内酰胺酶的活性较差。为了克服这一挑战,我们研究了 C-2-和 C-3-取代的青霉素和头孢菌素磺酰胺类β-内酰胺酶抑制剂对 OXA-1、广谱(OXA-10、OXA-14 和 OXA-17)和碳青霉烯酶型(OXA-24/40)D 类β-内酰胺酶的作用。三种 C-2-取代的青霉素磺酰胺化合物(JDB/LN-1-255、JDB/LN-III-26 和 JDB/ASR-II-292)对 OXA-1 β-内酰胺酶的 K(i)值较低(0.70 +/- 0.14 --> 1.60 +/- 0.30 microM),与 C-3-取代的头孢菌素磺酰胺(JDB/DVR-II-214)、他唑巴坦和克拉维酸相比,K(i)有显著改善。C-2-取代的青霉素磺酰胺 JDB/ASR-II-292 和 JDB/LN-1-255 对 OXA-10、-14、-17 和 -24/40 类β-内酰胺酶的 K(i)值也较低(0.20 +/- 0.04 --> 17 +/- 4 microM)。此外,JDB/LN-1-255 对 OXA-1 表现出化学计量失活(周转率,即初始酶抑制剂复合物在水解和酶失活之间的分配 [t(n)] = 0),对其他 OXA 酶的 t(n)值范围为 5 至 8。通过使用质谱法研究失活途径中的中间体,我们确定 JDB/LN-1-255 通过形成不片段化的共价加合物来抑制 OXAβ-内酰胺酶。根据 OXA-1 的底物和抑制剂动力学,我们构建了一个模型,表明 JDB/LN-1-255 的 C-3 羧酸盐与 Ser115 和 Thr213 相互作用,C-2 上的 R-2 基团适合在长 B9 和 B10 β 链之间的空间,并且在 JDB/LN-1-255 的吡啶环与 Val116 和 Leu161 之间形成稳定的疏水性相互作用。通过利用保守的结构和机制特征,JDB/LN-1-255 是寻找 OXA 型β-内酰胺酶有效抑制剂的有前途的先导化合物。