Suppr超能文献

D 类β-内酰胺酶的青霉素砜抑制剂。

Penicillin sulfone inhibitors of class D beta-lactamases.

机构信息

Departments of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.

出版信息

Antimicrob Agents Chemother. 2010 Apr;54(4):1414-24. doi: 10.1128/AAC.00743-09. Epub 2010 Jan 19.

Abstract

OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.

摘要

OXA 类β-内酰胺酶在不动杆菌属和铜绿假单胞菌中对β-内酰胺类抗生素的耐药性起主要作用,这两种菌是最难治疗的医院获得性病原体。通常,临床应用的β-内酰胺酶抑制剂(克拉维酸、舒巴坦和他唑巴坦)对 D 类β-内酰胺酶的活性较差。为了克服这一挑战,我们研究了 C-2-和 C-3-取代的青霉素和头孢菌素磺酰胺类β-内酰胺酶抑制剂对 OXA-1、广谱(OXA-10、OXA-14 和 OXA-17)和碳青霉烯酶型(OXA-24/40)D 类β-内酰胺酶的作用。三种 C-2-取代的青霉素磺酰胺化合物(JDB/LN-1-255、JDB/LN-III-26 和 JDB/ASR-II-292)对 OXA-1 β-内酰胺酶的 K(i)值较低(0.70 +/- 0.14 --> 1.60 +/- 0.30 microM),与 C-3-取代的头孢菌素磺酰胺(JDB/DVR-II-214)、他唑巴坦和克拉维酸相比,K(i)有显著改善。C-2-取代的青霉素磺酰胺 JDB/ASR-II-292 和 JDB/LN-1-255 对 OXA-10、-14、-17 和 -24/40 类β-内酰胺酶的 K(i)值也较低(0.20 +/- 0.04 --> 17 +/- 4 microM)。此外,JDB/LN-1-255 对 OXA-1 表现出化学计量失活(周转率,即初始酶抑制剂复合物在水解和酶失活之间的分配 [t(n)] = 0),对其他 OXA 酶的 t(n)值范围为 5 至 8。通过使用质谱法研究失活途径中的中间体,我们确定 JDB/LN-1-255 通过形成不片段化的共价加合物来抑制 OXAβ-内酰胺酶。根据 OXA-1 的底物和抑制剂动力学,我们构建了一个模型,表明 JDB/LN-1-255 的 C-3 羧酸盐与 Ser115 和 Thr213 相互作用,C-2 上的 R-2 基团适合在长 B9 和 B10 β 链之间的空间,并且在 JDB/LN-1-255 的吡啶环与 Val116 和 Leu161 之间形成稳定的疏水性相互作用。通过利用保守的结构和机制特征,JDB/LN-1-255 是寻找 OXA 型β-内酰胺酶有效抑制剂的有前途的先导化合物。

相似文献

1
Penicillin sulfone inhibitors of class D beta-lactamases.
Antimicrob Agents Chemother. 2010 Apr;54(4):1414-24. doi: 10.1128/AAC.00743-09. Epub 2010 Jan 19.
2
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01172-17. Print 2017 Nov.
3
Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone.
J Biol Chem. 2009 Jan 9;284(2):945-53. doi: 10.1074/jbc.M806833200. Epub 2008 Oct 27.
5
LN-1-255, a penicillanic acid sulfone able to inhibit the class D carbapenemase OXA-48.
J Antimicrob Chemother. 2016 Aug;71(8):2171-80. doi: 10.1093/jac/dkw105. Epub 2016 Apr 28.
6
6-Arylmethylidene Penicillin-Based Sulfone Inhibitors for Repurposing Antibiotic Efficiency in Priority Pathogens.
J Med Chem. 2020 Apr 9;63(7):3737-3755. doi: 10.1021/acs.jmedchem.0c00127. Epub 2020 Mar 31.
7
Characterization of the First OXA-10 Natural Variant with Increased Carbapenemase Activity.
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01817-18. Print 2019 Jan.
9
Inhibition of OXA-1 beta-lactamase by penems.
Antimicrob Agents Chemother. 2008 Sep;52(9):3135-43. doi: 10.1128/AAC.01677-07. Epub 2008 Jun 16.
10
Cyclic Boronates Inhibit All Classes of β-Lactamases.
Antimicrob Agents Chemother. 2017 Mar 24;61(4). doi: 10.1128/AAC.02260-16. Print 2017 Apr.

引用本文的文献

1
Characterization of acquired β-lactamases in and quantification of their contributions to resistance.
Microbiol Spectr. 2024 Oct 3;12(10):e0069424. doi: 10.1128/spectrum.00694-24. Epub 2024 Sep 9.
2
Redirecting pantoprazole as a metallo-beta-lactamase inhibitor in carbapenem-resistant .
Front Pharmacol. 2024 Mar 12;15:1366459. doi: 10.3389/fphar.2024.1366459. eCollection 2024.
3
A review on the mechanistic details of OXA enzymes of ESKAPE pathogens.
Pathog Glob Health. 2023 May;117(3):219-234. doi: 10.1080/20477724.2022.2088496. Epub 2022 Jun 26.
4
β-lactam Resistance in : Current Status, Future Prospects.
Pathogens. 2021 Dec 18;10(12):1638. doi: 10.3390/pathogens10121638.
6
New Carbapenemase Inhibitors: Clearing the Way for the β-Lactams.
Int J Mol Sci. 2020 Dec 6;21(23):9308. doi: 10.3390/ijms21239308.
7
Broad spectrum antibiotic-degrading metallo-β-lactamases are phylogenetically diverse.
Protein Cell. 2020 Aug;11(8):613-617. doi: 10.1007/s13238-020-00736-4.
8
Structure-Based Screening of Non-β-Lactam Inhibitors against Class D β-Lactamases: An Approach of Docking and Molecular Dynamics.
ACS Omega. 2020 Apr 1;5(16):9356-9365. doi: 10.1021/acsomega.0c00356. eCollection 2020 Apr 28.
9
Identifying Oxacillinase-48 Carbapenemase Inhibitors Using DNA-Encoded Chemical Libraries.
ACS Infect Dis. 2020 May 8;6(5):1214-1227. doi: 10.1021/acsinfecdis.0c00015. Epub 2020 Mar 25.
10
The latest advances in β-lactam/β-lactamase inhibitor combinations for the treatment of Gram-negative bacterial infections.
Expert Opin Pharmacother. 2019 Dec;20(17):2169-2184. doi: 10.1080/14656566.2019.1660772. Epub 2019 Sep 9.

本文引用的文献

1
Updated functional classification of beta-lactamases.
Antimicrob Agents Chemother. 2010 Mar;54(3):969-76. doi: 10.1128/AAC.01009-09. Epub 2009 Dec 7.
3
Diversity, epidemiology, and genetics of class D beta-lactamases.
Antimicrob Agents Chemother. 2010 Jan;54(1):24-38. doi: 10.1128/AAC.01512-08. Epub 2009 Aug 31.
4
Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases.
Chem Biol. 2009 May 29;16(5):540-7. doi: 10.1016/j.chembiol.2009.04.010.
5
Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2'-substituted penicillin sulfone.
J Biol Chem. 2009 Jan 9;284(2):945-53. doi: 10.1074/jbc.M806833200. Epub 2008 Oct 27.
6
Inhibition of OXA-1 beta-lactamase by penems.
Antimicrob Agents Chemother. 2008 Sep;52(9):3135-43. doi: 10.1128/AAC.01677-07. Epub 2008 Jun 16.
7
Global challenge of multidrug-resistant Acinetobacter baumannii.
Antimicrob Agents Chemother. 2007 Oct;51(10):3471-84. doi: 10.1128/AAC.01464-06. Epub 2007 Jul 23.
8
Crystal structure of the carbapenemase OXA-24 reveals insights into the mechanism of carbapenem hydrolysis.
Proc Natl Acad Sci U S A. 2007 Mar 27;104(13):5354-9. doi: 10.1073/pnas.0607557104. Epub 2007 Mar 20.
10
Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40.
Antimicrob Agents Chemother. 2006 Sep;50(9):2941-5. doi: 10.1128/AAC.00116-06.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验