Suppr超能文献

D 类 β-内酰胺酶:五十年后的再评价。

Class D β-lactamases: a reappraisal after five decades.

机构信息

Department of Chemistry, Grand Valley State University , Allendale, Michigan 49401, United States.

出版信息

Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. Epub 2013 Jul 31.

Abstract

Despite 70 years of clinical use, β-lactam antibiotics still remain at the forefront of antimicrobial chemotherapy. The major challenge to these life-saving therapeutics is the presence of bacterial enzymes (i.e., β-lactamases) that can hydrolyze the β-lactam bond and inactivate the antibiotic. These enzymes can be grouped into four classes (A-D). Among the most genetically diverse are the class D β-lactamases. In this class are β-lactamases that can inactivate the entire spectrum of β-lactam antibiotics (penicillins, cephalosporins, and carbapenems). Class D β-lactamases are mostly found in Gram-negative bacteria such as Pseudomonas aeruginosa , Escherichia coli , Proteus mirabilis , and Acinetobacter baumannii . The active-sites of class D β-lactamases contain an unusual N-carboxylated lysine post-translational modification. A strongly hydrophobic active-site helps create the conditions that allow the lysine to combine with CO2, and the resulting carbamate is stabilized by a number of hydrogen bonds. The carboxy-lysine plays a symmetric role in the reaction, serving as a general base to activate the serine nucleophile in the acylation reaction, and the deacylating water in the second step. There are more than 250 class D β-lactamases described, and the full set of variants shows remarkable diversity with regard to substrate binding and turnover. Narrow-spectrum variants are most effective against the earliest generation penicillins and cephalosporins such as ampicillin and cephalothin. Extended-spectrum variants (also known as extended-spectrum β-lactamases, ESBLs) pose a more dangerous clinical threat as they possess a small number of substitutions that allow them to bind and hydrolyze later generation cephalosporins that contain bulkier side-chain constituents (e.g., cefotaxime, ceftazidime, and cefepime). Mutations that permit this versatility seem to cluster in the area surrounding an active-site tryptophan resulting in a widened active-site to accommodate the oxyimino side-chains of these cephalosporins. More concerning are the class D β-lactamases that hydrolyze clinically important carbapenem β-lactam drugs (e.g., imipenem). Whereas carbapenems irreversibly acylate and inhibit narrow-spectrum β-lactamases, class D carbapenemases are able to recruit and activate a deacylating water. The rotational orientation of the C6 hydroxyethyl group found on all carbapenem antibiotics likely plays a role in whether the deacylating water is effective or not. Inhibition of class D β-lactamases is a current challenge. Commercially available inhibitors that are active against other classes of β-lactamases are ineffective against class D enzymes. On the horizon are several compounds, consisting of both β-lactam derivatives and non-β-lactams, that have the potential of providing novel leads to design new mechanism-based inactivators that are effective against the class D enzymes. Several act synergistically when given in combination with a β-lactam antibiotic, and others show a unique mechanism of inhibition that is distinct from the traditional β-lactamase inhibitors. These studies will bolster structure-based inhibitor design efforts to facilitate the optimization and development of these compounds as class D inactivators.

摘要

尽管β-内酰胺类抗生素已经临床应用了 70 年,但它们仍然是抗菌化学疗法的前沿药物。这些救命疗法面临的主要挑战是存在细菌酶(即β-内酰胺酶),这些酶可以水解β-内酰胺键并使抗生素失活。这些酶可以分为四类(A-D)。其中最具遗传多样性的是 D 类β-内酰胺酶。在这一类中,有可以使整个β-内酰胺抗生素(青霉素、头孢菌素和碳青霉烯类)失活的β-内酰胺酶。D 类β-内酰胺酶主要存在于革兰氏阴性菌中,如铜绿假单胞菌、大肠埃希菌、奇异变形杆菌和鲍曼不动杆菌。D 类β-内酰胺酶的活性部位含有一个不寻常的 N-羧基化赖氨酸的翻译后修饰。一个强烈的疏水性活性部位有助于创造使赖氨酸与 CO2 结合的条件,生成的氨基甲酸盐通过多个氢键得到稳定。羧基赖氨酸在反应中起着对称的作用,作为一种通用碱,在酰化反应中激活丝氨酸亲核试剂,在第二步中激活脱酰化水。已经描述了超过 250 种 D 类β-内酰胺酶,完整的变体在底物结合和转化方面表现出显著的多样性。窄谱变体对第一代青霉素和头孢菌素(如氨苄西林和头孢噻吩)最有效。扩展谱变体(也称为扩展谱β-内酰胺酶,ESBLs)对临床构成更大的威胁,因为它们只需要少数几个突变就可以结合和水解含有更大侧链成分的第二代头孢菌素(如头孢噻肟、头孢他啶和头孢吡肟)。允许这种多功能性的突变似乎聚集在活性部位色氨酸周围,导致活性部位变宽以适应这些头孢菌素的氧肟酸侧链。更令人担忧的是那些可以水解临床重要的碳青霉烯类β-内酰胺类药物(如亚胺培南)的 D 类β-内酰胺酶。虽然碳青霉烯类不可逆地酰化并抑制窄谱β-内酰胺酶,但 D 类碳青霉烯酶能够招募并激活脱酰化水。所有碳青霉烯类抗生素中发现的 C6 羟乙基基团的旋转方向可能在脱酰化水是否有效方面发挥作用。D 类β-内酰胺酶的抑制是当前的挑战。市售的对其他β-内酰胺酶类有效的抑制剂对 D 类酶无效。目前有几种化合物,包括β-内酰胺衍生物和非β-内酰胺类化合物,具有提供新的先导化合物的潜力,可设计出新的基于机制的失活剂,对 D 类酶有效。一些化合物与β-内酰胺抗生素联合使用时具有协同作用,而另一些化合物则表现出与传统β-内酰胺酶抑制剂不同的独特抑制机制。这些研究将支持基于结构的抑制剂设计工作,以促进这些化合物作为 D 类失活剂的优化和开发。

相似文献

1
Class D β-lactamases: a reappraisal after five decades.
Acc Chem Res. 2013 Nov 19;46(11):2407-15. doi: 10.1021/ar300327a. Epub 2013 Jul 31.
3
β-Lactamases and β-Lactamase Inhibitors in the 21st Century.
J Mol Biol. 2019 Aug 23;431(18):3472-3500. doi: 10.1016/j.jmb.2019.04.002. Epub 2019 Apr 5.
6
Structure of ADC-68, a novel carbapenem-hydrolyzing class C extended-spectrum β-lactamase isolated from Acinetobacter baumannii.
Acta Crystallogr D Biol Crystallogr. 2014 Nov;70(Pt 11):2924-36. doi: 10.1107/S1399004714019543. Epub 2014 Oct 23.
7
Activity of the β-Lactamase Inhibitor LN-1-255 against Carbapenem-Hydrolyzing Class D β-Lactamases from Acinetobacter baumannii.
Antimicrob Agents Chemother. 2017 Oct 24;61(11). doi: 10.1128/AAC.01172-17. Print 2017 Nov.
9
Class D β-lactamases: are they all carbapenemases?
Antimicrob Agents Chemother. 2014;58(4):2119-25. doi: 10.1128/AAC.02522-13. Epub 2014 Jan 27.

引用本文的文献

4
Standardized Residue Numbering and Secondary Structure Nomenclature in the Class D β-Lactamases.
bioRxiv. 2025 Jan 22:2025.01.20.633977. doi: 10.1101/2025.01.20.633977.
5
Genetic profiling of multidrug-resistant from a tertiary care center in Malaysia.
Microbiol Spectr. 2025 Feb 4;13(2):e0087224. doi: 10.1128/spectrum.00872-24. Epub 2024 Dec 20.
6
OXA β-lactamases from spp. are membrane bound and secreted into outer membrane vesicles.
mBio. 2025 Feb 5;16(2):e0334324. doi: 10.1128/mbio.03343-24. Epub 2024 Dec 13.
7
Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria.
Antibiotics (Basel). 2024 Mar 15;13(3):260. doi: 10.3390/antibiotics13030260.
8
Structural and Biochemical Features of OXA-517: a Carbapenem and Expanded-Spectrum Cephalosporin Hydrolyzing OXA-48 Variant.
Antimicrob Agents Chemother. 2023 Feb 16;67(2):e0109522. doi: 10.1128/aac.01095-22. Epub 2023 Jan 17.
9
A review on the mechanistic details of OXA enzymes of ESKAPE pathogens.
Pathog Glob Health. 2023 May;117(3):219-234. doi: 10.1080/20477724.2022.2088496. Epub 2022 Jun 26.
10
Efficacy and Activity of Novel Antibiotics for Infections With Carbapenem-Resistant Gram-Negative Pathogens.
Front Cell Infect Microbiol. 2022 May 20;12:884365. doi: 10.3389/fcimb.2022.884365. eCollection 2022.

本文引用的文献

2
OXA-48-like carbapenemases: the phantom menace.
J Antimicrob Chemother. 2012 Jul;67(7):1597-606. doi: 10.1093/jac/dks121. Epub 2012 Apr 11.
5
Evolution to carbapenem-hydrolyzing activity in noncarbapenemase class D β-lactamase OXA-10 by rational protein design.
Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18424-9. doi: 10.1073/pnas.1110530108. Epub 2011 Oct 31.
6
Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D β-lactamase from Acinetobacter baumannii.
J Biol Chem. 2011 Oct 28;286(43):37292-303. doi: 10.1074/jbc.M111.280115. Epub 2011 Aug 31.
8
Ceftazidime-hydrolysing β-lactamase OXA-145 with impaired hydrolysis of penicillins in Pseudomonas aeruginosa.
J Antimicrob Chemother. 2011 Aug;66(8):1745-50. doi: 10.1093/jac/dkr187. Epub 2011 Jun 10.
10
Structures of the class D carbapenemase OXA-24 from Acinetobacter baumannii in complex with doripenem.
J Mol Biol. 2011 Mar 4;406(4):583-94. doi: 10.1016/j.jmb.2010.12.042. Epub 2011 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验