Suppr超能文献

重复测量设计中的置信区间:观测次数原则。

Confidence intervals in repeated-measures designs: The number of observations principle.

作者信息

Jarmasz Jerzy, Hollands Justin G

机构信息

Defence Research and Development Canada - Toronto.

出版信息

Can J Exp Psychol. 2009 Jun;63(2):124-38. doi: 10.1037/a0014164.

Abstract

Since the publication of Loftus and Masson's (1994) method for computing confidence intervals (CIs) in repeated-measures (RM) designs, there has been uncertainty about how to apply it to particular effects in complex factorial designs. Masson and Loftus (2003) proposed that RM CIs for factorial designs be based on number of observations rather than number of participants. However, determining the correct number of observations for a particular effect can be complicated, given the variety of effects occurring in factorial designs. In this paper the authors define a general "number of observations" principle, explain why it obtains, and provide step-by-step instructions for constructing CIs for various effect types. The authors illustrate these procedures with numerical examples.

摘要

自洛夫特斯和马森(1994年)发表了在重复测量(RM)设计中计算置信区间(CIs)的方法以来,对于如何将其应用于复杂析因设计中的特定效应一直存在不确定性。马森和洛夫特斯(2003年)提出,析因设计的RM置信区间应基于观测次数而非参与者数量。然而,鉴于析因设计中出现的各种效应,确定特定效应的正确观测次数可能会很复杂。在本文中,作者定义了一个通用的“观测次数”原则,解释了其成立的原因,并提供了针对各种效应类型构建置信区间的分步说明。作者用数值示例说明了这些程序。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验