Suppr超能文献

适应性疗法

Adaptive therapy.

作者信息

Gatenby Robert A, Silva Ariosto S, Gillies Robert J, Frieden B Roy

机构信息

Department of Integrative Mathematical Oncology, Moffitt Cancer Center, Tampa, Florida 33612, USA.

出版信息

Cancer Res. 2009 Jun 1;69(11):4894-903. doi: 10.1158/0008-5472.CAN-08-3658.

Abstract

A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the "cost" of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894-903] Major FindingsWe present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if "treatment-for-cure strategy" is replaced by "treatment-for-stability." Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.

摘要

目前有多种成功的全身疗法可用于治疗播散性癌症。然而,肿瘤反应往往是短暂的,治疗常常因耐药群体的出现而失败。后者反映了肿瘤微环境的时空异质性以及癌症表型适应治疗干扰的进化能力。尽管癌症是高度动态的系统,但癌症治疗通常是按照固定的线性方案进行的。在此,我们研究一种适应性治疗方法,该方法会根据肿瘤微环境和细胞表型的时空变异性以及治疗引起的干扰而演变。最初的数学模型发现,当未治疗的肿瘤中出现耐药表型时,它们通常数量较少,因为它们的适应性不如敏感群体。这反映了表型耐药的“代价”,例如用于上调异生物质代谢的额外底物和能量,因此无法用于增殖,或者是赋予表型敏感细胞耐药性的环境(即缺血或缺氧)的生长抑制性质。因此,在癌症的达尔文环境中,适应性更强的化学敏感细胞通常会以适应性较差的化学耐药细胞为代价进行增殖。模型表明,如果在治疗前就存在耐药群体,旨在杀死最大数量癌细胞的治疗会消除这种抑制作用,实际上会促进耐药群体更快地生长。我们提出了一种替代方法,即持续调整治疗以实现固定的肿瘤群体。适应性治疗的目标是通过允许大量化学敏感细胞存活来维持稳定的肿瘤负担,从而使这些细胞反过来抑制适应性较差但化学耐药的亚群的增殖。计算机模拟表明,这种策略可以导致延长生存期,显著长于高剂量密度或节拍式疗法。体内实验支持了适应性治疗的可行性。[《癌症研究》2009年;69(11):4894 - 903]主要发现我们对有治疗和无治疗情况下肿瘤群体的进化动力学进行了数学分析。解析解和数值模拟表明,在进行预处理时,由于表型或微环境因素,存在对治疗耐药的癌症亚群;最大剂量密度化疗会加速耐药群体的快速扩增。模型预测,如果将“治愈性治疗策略”替换为“稳定性治疗策略”,宿主生存期可以最大化。具体而言,模型预测一种最佳治疗策略将调整治疗以维持化学敏感细胞的稳定群体,进而在正常肿瘤条件下(即不存在治疗诱导毒性时)抑制耐药群体的生长。使用卡铂治疗的OVCAR异种移植瘤进行的体内实验表明,适应性治疗是可行的,并且在这个系统中可以产生长期生存。

相似文献

1
Adaptive therapy.
Cancer Res. 2009 Jun 1;69(11):4894-903. doi: 10.1158/0008-5472.CAN-08-3658.
2
3
A theoretical quantitative model for evolution of cancer chemotherapy resistance.
Biol Direct. 2010 Apr 20;5:25. doi: 10.1186/1745-6150-5-25.
4
Spatial Heterogeneity and Evolutionary Dynamics Modulate Time to Recurrence in Continuous and Adaptive Cancer Therapies.
Cancer Res. 2018 Apr 15;78(8):2127-2139. doi: 10.1158/0008-5472.CAN-17-2649. Epub 2018 Jan 30.
5
What does not kill a tumour may make it stronger: In silico insights into chemotherapeutic drug resistance.
J Theor Biol. 2018 Oct 7;454:253-267. doi: 10.1016/j.jtbi.2018.06.014. Epub 2018 Jun 15.
6
Dosage strategies for delaying resistance emergence in heterogeneous tumors.
FEBS Open Bio. 2021 May;11(5):1322-1331. doi: 10.1002/2211-5463.13129. Epub 2021 Mar 30.
8
Application of mathematical models to metronomic chemotherapy: What can be inferred from minimal parameterized models?
Cancer Lett. 2017 Aug 10;401:74-80. doi: 10.1016/j.canlet.2017.03.021. Epub 2017 Mar 18.
9
Modeling the chemotherapy-induced selection of drug-resistant traits during tumor growth.
J Theor Biol. 2018 Jan 7;436:120-134. doi: 10.1016/j.jtbi.2017.10.005. Epub 2017 Oct 13.

引用本文的文献

1
Mistletoe in Cancer Cell Biology: Recent Advances.
Curr Issues Mol Biol. 2025 Aug 20;47(8):672. doi: 10.3390/cimb47080672.
2
Systems biology successes and areas for opportunity in prostate cancer.
Endocr Relat Cancer. 2025 Aug 20;32(8). doi: 10.1530/ERC-25-0067. Print 2025 Aug 1.
3
Using spatial statistics to infer game-theoretic interactions in an agent-based model of cancer cells.
bioRxiv. 2025 Jul 15:2025.07.09.664005. doi: 10.1101/2025.07.09.664005.
7
Local Adaptive Mapping of Karyotype Fitness Landscapes.
bioRxiv. 2025 Jun 21:2023.07.14.549079. doi: 10.1101/2023.07.14.549079.
8
A Proof-of-Concept Clinical Trial Design for Evolutionary Guided Precision Medicine for Cancer.
medRxiv. 2025 May 23:2025.05.23.25328210. doi: 10.1101/2025.05.23.25328210.
9
Extrachromosomal DNA: shaping the evolutionary dynamics of cancer.
Trends Cancer. 2025 Jul 9. doi: 10.1016/j.trecan.2025.06.004.
10

本文引用的文献

1
Structure, function and regulation of P-glycoprotein and its clinical relevance in drug disposition.
Xenobiotica. 2008 Jul;38(7-8):802-32. doi: 10.1080/00498250701867889.
2
Inducing catastrophe in malignant growth.
Math Med Biol. 2008 Sep;25(3):267-83. doi: 10.1093/imammb/dqn014. Epub 2008 Jul 14.
3
Inhibition of multi-drug resistance of ovarian carcinoma by small interfering RNA targeting to MRP2 gene.
Arch Gynecol Obstet. 2009 Feb;279(2):149-57. doi: 10.1007/s00404-008-0690-8. Epub 2008 Jun 27.
4
Multiple pathways are involved in drug resistance to doxorubicin in an osteosarcoma cell line.
Anticancer Drugs. 2008 Mar;19(3):257-65. doi: 10.1097/cad.0b013e3282f435b6.
5
Expression of hypoxia-inducible factor 1alpha gene affects the outcome in patients with ovarian cancer.
Int J Gynecol Cancer. 2008 May-Jun;18(3):499-505. doi: 10.1111/j.1525-1438.2007.01055.x.
6
Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib.
Br J Cancer. 2008 May 20;98(10):1619-29. doi: 10.1038/sj.bjc.6604352. Epub 2008 Apr 29.
7
Hypoxia in prostate cancer: a powerful shield against tumour destruction?
Cancer Treat Rev. 2008 Jun;34(4):313-27. doi: 10.1016/j.ctrv.2008.01.006. Epub 2008 Mar 10.
8
Overview of resistance to systemic therapy in patients with breast cancer.
Adv Exp Med Biol. 2007;608:1-22. doi: 10.1007/978-0-387-74039-3_1.
9
Breast tumor heterogeneity: cancer stem cells or clonal evolution?
Cell Cycle. 2007 Oct 1;6(19):2332-8. doi: 10.4161/cc.6.19.4914. Epub 2007 Aug 17.
10
Concepts and clinical trials of dose-dense chemotherapy for breast cancer .
Clin Breast Cancer. 2005 Dec;6(5):402-11. doi: 10.3816/CBC.2005.n.044.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验