Castellano Sergi, Andrés Aida M, Bosch Elena, Bayes Mònica, Guigó Roderic, Clark Andrew G
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
Mol Biol Evol. 2009 Sep;26(9):2031-40. doi: 10.1093/molbev/msp109. Epub 2009 Jun 1.
Selenocysteine (Sec), the 21st amino acid, is incorporated into proteins through the recoding of a termination codon, an inefficient translational process mediated by a complex molecular machinery. Sec is a rare amino acid in extant proteins, chemically similar to cysteine (Cys), found in homologous position to Cys of nonselenoprotein families. Selenoproteins account for the dependence of vertebrates on environmental selenium (Se) and have an important role in several Se-deficiency diseases. Selenoproteins are poorly characterized enzymes and reports on the functional exchangeability of Sec with Cys are limited and controversial. Whether the unique role of Sec in some selenoenzymes illustrates the broader contribution of Se to protein function is unknown (Gromer S, Johansson L, Bauer H, Arscott LD, Rauch S, Ballou DP, Williams CH Jr, Schirmer RH, Arnér ES. 2003. Active sites of thioredoxin reductases: why selenoproteins? Proc Natl Acad Sci USA. 100:12618-12623). Here, we address this question from an evolutionary perspective by the simultaneous identification of the patterns of divergence in almost half a billion years of vertebrate evolution and diversity within the human lineage for the full complement of enzymatic Sec residues in these proteomes. We complete this analysis with data for the homologous Cys residues in the same genomes. Our results indicate concerted purifying selection across Sec and Cys sites in all selenoproteomes, consistent with a unique role of Sec in protein function, low exchangeability, and an unknown degree of functional divergence with Cys homologs. The distinct biochemical properties of Sec, rather than the geographical distribution of Se, global O(2) levels or Sec metabolic cost, appear to play a major role in driving adaptive changes in vertebrate selenoproteomes. A better understanding of the selenoproteomes and neutral evolutionary patterns in other taxa will be necessary to fully assess the generality of this conclusion.
硒代半胱氨酸(Sec)是第21种氨基酸,它通过终止密码子的重新编码被整合到蛋白质中,这是一个由复杂分子机制介导的低效翻译过程。Sec是现存蛋白质中的一种稀有氨基酸,在化学性质上与半胱氨酸(Cys)相似,在非硒蛋白家族的Cys同源位置被发现。硒蛋白体现了脊椎动物对环境硒(Se)的依赖性,并且在几种硒缺乏疾病中发挥重要作用。硒蛋白是特征 poorly characterized的酶,关于Sec与Cys功能可交换性的报道有限且存在争议。Sec在某些硒酶中的独特作用是否说明了Se对蛋白质功能的更广泛贡献尚不清楚(Gromer S,Johansson L,Bauer H,Arscott LD,Rauch S,Ballou DP,Williams CH Jr,Schirmer RH,Arnér ES。2003年。硫氧还蛋白还原酶的活性位点:为什么是硒蛋白?美国国家科学院院刊。100:12618 - 12623)。在这里,我们从进化的角度解决这个问题,通过同时识别近5亿年脊椎动物进化过程中的分化模式以及人类谱系中这些蛋白质组中所有酶促Sec残基的多样性。我们用相同基因组中同源Cys残基的数据完成了这项分析。我们的结果表明,在所有硒蛋白组中,Sec和Cys位点都受到协同纯化选择,这与Sec在蛋白质功能中的独特作用、低可交换性以及与Cys同源物未知程度的功能分化一致。Sec独特的生化特性,而非Se的地理分布、全球氧气水平或Sec的代谢成本,似乎在推动脊椎动物硒蛋白组的适应性变化中起主要作用。要全面评估这一结论的普遍性,有必要更好地了解其他类群中的硒蛋白组和中性进化模式。