Suppr超能文献

弥补高分子量硫氧还蛋白还原酶中硒代半胱氨酸的缺失:亲电活化假说

Compensating for the absence of selenocysteine in high-molecular weight thioredoxin reductases: the electrophilic activation hypothesis.

作者信息

Lothrop Adam P, Snider Gregg W, Flemer Stevenson, Ruggles Erik L, Davidson Ronald S, Lamb Audrey L, Hondal Robert J

机构信息

Department of Biochemistry, University of Vermont, College of Medicine , 89 Beaumont Avenue, Given Building Room B413, Burlington, Vermont 05405, United States.

出版信息

Biochemistry. 2014 Feb 4;53(4):664-74. doi: 10.1021/bi4007258. Epub 2014 Jan 23.

Abstract

Mammalian thioredoxin reductase (TR) is a pyridine disulfide oxidoreductase that uses the rare amino acid selenocysteine (Sec) in place of the more commonly used amino acid cysteine (Cys). Selenium is a Janus-faced element because it is both highly nucleophilic and highly electrophilic. Cys orthologs of Sec-containing enzymes may compensate for the absence of a Sec residue by making the active site Cys residue more (i) nucleophilic, (ii) electrophilic, or (iii) reactive by increasing both S-nucleophilicity and S-electrophilicity. It has already been shown that the Cys ortholog TR from Drosophila melanogaster (DmTR) has increased S-nucleophilicity [Gromer, S., Johansson, L., Bauer, H., Arscott, L. D., Rauch, S., Ballou, D. P., Williams, C. H., Jr., Schrimer, R. H., and Arnér, E. S (2003) Active sites of thioredoxin reductases: Why selenoproteins? Proc. Natl. Acad. Sci. U.S.A. 100, 12618-12623]. Here we present evidence that DmTR also enhances the electrophilicity of Cys490 through the use of an "electrophilic activation" mechanism. This mechanism is proposed to work by polarizing the disulfide bond that occurs between Cys489 and Cys490 in the C-terminal redox center by the placement of a positive charge near Cys489. This polarization renders the sulfur atom of Cys490 electron deficient and enhances the rate of thiol/disulfide exchange that occurs between the N- and C-terminal redox centers. Our hypothesis was developed by using a strategy of homocysteine (hCys) for Cys substitution in the Cys-Cys redox dyad of DmTR to differentiate the function of each Cys residue. The results show that hCys could substitute for Cys490 with little loss of thioredoxin reductase activity, but that substitution of hCys for Cys489 resulted in a 238-fold reduction in activity. We hypothesize that replacement of Cys489 with hCys destroys an interaction between the sulfur atom of Cys489 and His464 crucial for the proposed electrophilic activation mechanism. This electrophilic activation serves as a compensatory mechanism in the absence of the more electrophilic Sec residue. We present an argument for the importance of S-electrophilicity in Cys orthologs of selenoenzymes.

摘要

哺乳动物硫氧还蛋白还原酶(TR)是一种吡啶二硫化物氧化还原酶,它使用稀有的氨基酸硒代半胱氨酸(Sec)取代了更常用的氨基酸半胱氨酸(Cys)。硒是一种具有两面性的元素,因为它既具有高度亲核性又具有高度亲电性。含Sec酶的Cys直系同源物可能通过使活性位点的Cys残基更(i)亲核、(ii)亲电或(iii)通过增加S-亲核性和S-亲电性来提高反应活性,从而弥补Sec残基的缺失。已经表明,来自黑腹果蝇的Cys直系同源TR(DmTR)具有增强的S-亲核性[格罗默,S.,约翰松,L.,鲍尔,H.,阿斯科特,L.D.,劳赫,S.,巴卢,D.P.,小威廉姆斯,C.H.,施里默,R.H.,和阿内尔,E.S(2003年)硫氧还蛋白还原酶的活性位点:为什么是硒蛋白?美国国家科学院院刊100,12618 - 12623]。在此我们提供证据表明,DmTR还通过使用“亲电激活”机制增强了Cys490的亲电性。提出该机制的工作方式是通过在Cys489附近放置一个正电荷,使C末端氧化还原中心中Cys489和Cys490之间形成的二硫键极化。这种极化使Cys490的硫原子缺电子,并提高了N末端和C末端氧化还原中心之间发生的硫醇/二硫键交换速率。我们的假设是通过在DmTR的Cys - Cys氧化还原二元组中使用同型半胱氨酸(hCys)替代Cys的策略来区分每个Cys残基的功能而提出的。结果表明,hCys可以替代Cys490,硫氧还蛋白还原酶活性几乎没有损失,但用hCys替代Cys489导致活性降低238倍。我们假设用hCys替代Cys489破坏了Cys489的硫原子与His464之间对于所提出的亲电激活机制至关重要的相互作用。这种亲电激活在缺乏更亲电的Sec残基时作为一种补偿机制。我们提出了关于S -亲电性在硒酶的Cys直系同源物中的重要性的观点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验