Suppr超能文献

存档乳腺癌血清的蛋白质组学分析

Proteomic analysis of archival breast cancer serum.

作者信息

Zeidan Bashar A, Cutress Ramsey I, Murray Nick, Coulton Gary R, Hastie Claire, Packham Graham, Townsend Paul A

机构信息

Human Genetics Division, Southampton General Hospital, University of Southampton, Southampton, SO16 6YD, UK.

出版信息

Cancer Genomics Proteomics. 2009 May-Jun;6(3):141-7.

Abstract

Large cohorts of archival samples are stored in tissue banks worldwide yet their contribution to biomarker discovery is limited. Proteomic profiling technologies have potential for early screening and diagnosis of cancer, and data from such samples can be the answer for many clinical questions. Here we introduce the notion of archival samples proteomics. Using SELDI-TOF MS analysis, we compared 30-year-old archival serum samples of healthy volunteers and patients diagnosed with non metastatic breast cancer. To validate the reproducibility of our results, analysis of the same samples was repeated in a different centre under standardised settings. Plausible differentially expressed protein peaks between the breast cancer and control groups were repeatedly detected. Our pilot study showed highly reproducible and concordant results between two independent analyses conducted in different centres. The feasibility and reliability of profiling serum archives of women with breast cancer was tested in this pilot study. Our results imply that proteomic profiling of serum may have an important role in biomarkers discovery regardless of the storage period. Clearly, multicentre validation of larger archival cohorts is vital.

摘要

全球各地的组织库中存储着大量的存档样本,但它们对生物标志物发现的贡献有限。蛋白质组分析技术在癌症的早期筛查和诊断方面具有潜力,来自此类样本的数据可能是许多临床问题的答案。在此,我们引入存档样本蛋白质组学的概念。使用表面增强激光解吸电离飞行时间质谱(SELDI-TOF MS)分析,我们比较了健康志愿者和被诊断为非转移性乳腺癌患者30年前的存档血清样本。为了验证我们结果的可重复性,在标准化条件下于不同中心对相同样本进行了重复分析。乳腺癌组和对照组之间合理的差异表达蛋白峰被反复检测到。我们的初步研究表明,在不同中心进行的两项独立分析之间结果具有高度的可重复性和一致性。在这项初步研究中测试了对乳腺癌女性血清存档进行分析的可行性和可靠性。我们的结果表明,无论存储时间长短,血清蛋白质组分析在生物标志物发现中可能具有重要作用。显然,对更大规模存档队列进行多中心验证至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验