Arbeev Konstantin G, Akushevich Igor, Kulminski Alexander M, Arbeeva Liubov S, Akushevich Lucy, Ukraintseva Svetlana V, Culminskaya Irina V, Yashin Anatoli I
Center for Population Health and Aging, Duke University, Trent Hall, Room 002, Box 90408, Durham, NC 27708-0408, USA.
J Theor Biol. 2009 May 7;258(1):103-11. doi: 10.1016/j.jtbi.2009.01.023. Epub 2009 Feb 4.
Many longitudinal studies of aging collect genetic information only for a sub-sample of participants of the study. These data also do not include recent findings, new ideas and methodological concepts developed by distinct groups of researchers. The formal statistical analyses of genetic data ignore this additional information and therefore cannot utilize the entire research potential of the data. In this paper, we present a stochastic model for studying such longitudinal data in joint analyses of genetic and non-genetic sub-samples. The model incorporates several major concepts of aging known to date and usually studied independently. These include age-specific physiological norms, allostasis and allostatic load, stochasticity, and decline in stress resistance and adaptive capacity with age. The approach allows for studying all these concepts in their mutual connection, even if respective mechanisms are not directly measured in data (which is typical for longitudinal data available to date). The model takes into account dependence of longitudinal indices and hazard rates on genetic markers and permits evaluation of all these characteristics for carriers of different alleles (genotypes) to address questions concerning genetic influence on aging-related characteristics. The method is based on extracting genetic information from the entire sample of longitudinal data consisting of genetic and non-genetic sub-samples. Thus it results in a substantial increase in the accuracy of statistical estimates of genetic parameters compared to methods that use only information from a genetic sub-sample. Such an increase is achieved without collecting additional genetic data. Simulation studies illustrate the increase in the accuracy in different scenarios for datasets structurally similar to the Framingham Heart Study. Possible applications of the model and its further generalizations are discussed.
许多关于衰老的纵向研究仅为研究参与者的一个子样本收集遗传信息。这些数据也不包括不同研究团队最近的发现、新观点和方法学概念。对遗传数据的形式统计分析忽略了这些额外信息,因此无法利用数据的全部研究潜力。在本文中,我们提出了一个随机模型,用于在遗传和非遗传子样本的联合分析中研究此类纵向数据。该模型纳入了目前已知的几个衰老主要概念,这些概念通常是独立研究的。其中包括特定年龄的生理规范、应激负荷和应激负荷过载、随机性,以及随着年龄增长抗应激能力和适应能力的下降。即使在数据中没有直接测量各自的机制(这是目前可用纵向数据的典型情况),该方法也允许研究所有这些概念之间的相互联系。该模型考虑了纵向指标和风险率对遗传标记的依赖性,并允许评估不同等位基因(基因型)携带者的所有这些特征,以解决有关遗传对衰老相关特征影响的问题。该方法基于从由遗传和非遗传子样本组成的纵向数据全样本中提取遗传信息。因此,与仅使用遗传子样本信息的方法相比,它显著提高了遗传参数统计估计的准确性。这种提高是在不收集额外遗传数据的情况下实现的。模拟研究说明了在与弗雷明汉心脏研究结构相似的数据集的不同场景下准确性的提高。讨论了该模型的可能应用及其进一步的推广。