Suppr超能文献

STPM:一个用于随机过程模型的R软件包。

stpm: an R package for stochastic process model.

作者信息

Zhbannikov Ilya Y, Arbeev Konstantin, Akushevich Igor, Stallard Eric, Yashin Anatoliy I

机构信息

Biodemography of Aging Research Unit (BARU) at Social Science Research Institute, Duke University, 2024 W. Main St., Durham, Box 90420, 27705, NC, USA.

Duke Population Research Institute, Duke University, Durham, Box 90989, 27708-0989, NC, USA.

出版信息

BMC Bioinformatics. 2017 Feb 23;18(1):125. doi: 10.1186/s12859-017-1538-7.

Abstract

BACKGROUND

The Stochastic Process Model (SPM) represents a general framework for modeling the joint evolution of repeatedly measured variables and time-to-event outcomes observed in longitudinal studies, i.e., SPM relates the stochastic dynamics of variables (e.g., physiological or biological measures) with the probabilities of end points (e.g., death or system failure). SPM is applicable for analyses of longitudinal data in many research areas; however, there are no publicly available software tools that implement this methodology.

RESULTS

We developed an R package stpm for the SPM-methodology. The package estimates several versions of SPM currently available in the literature including discrete- and continuous-time multidimensional models and a one-dimensional model with time-dependent parameters. Also, the package provides tools for simulation and projection of individual trajectories and hazard functions.

CONCLUSION

In this paper, we present the first software implementation of the SPM-methodology by providing an R package stpm, which was verified through extensive simulation and validation studies. Future work includes further improvements of the model. Clinical and academic researchers will benefit from using the presented model and software. The R package stpm is available as open source software from the following links: https://cran.r-project.org/package=stpm (stable version) or https://github.com/izhbannikov/spm (developer version).

摘要

背景

随机过程模型(SPM)是一个通用框架,用于对纵向研究中重复测量变量和事件发生时间结局的联合演变进行建模,即SPM将变量的随机动态(例如生理或生物学测量)与终点概率(例如死亡或系统故障)联系起来。SPM适用于许多研究领域的纵向数据分析;然而,目前没有公开可用的软件工具来实现这种方法。

结果

我们为SPM方法开发了一个R包stpm。该包估计了文献中目前可用的几个SPM版本,包括离散时间和连续时间多维模型以及具有时间依赖参数的一维模型。此外,该包还提供了用于模拟和预测个体轨迹及风险函数的工具。

结论

在本文中,我们通过提供一个R包stpm展示了SPM方法的首个软件实现,该包已通过广泛的模拟和验证研究得到验证。未来的工作包括对模型的进一步改进。临床和学术研究人员将从使用所展示的模型和软件中受益。R包stpm可从以下链接作为开源软件获取:https://cran.r-project.org/package=stpm(稳定版本)或https://github.com/izhbannikov/spm(开发者版本)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3926/5324240/dc5e6c0ae64e/12859_2017_1538_Fig1_HTML.jpg

相似文献

1
stpm: an R package for stochastic process model.
BMC Bioinformatics. 2017 Feb 23;18(1):125. doi: 10.1186/s12859-017-1538-7.
2
Extending the code in the open-source saemix package to fit joint models of longitudinal and time-to-event data.
Comput Methods Programs Biomed. 2024 Apr;247:108095. doi: 10.1016/j.cmpb.2024.108095. Epub 2024 Feb 23.
5
Interpreting blood GLUcose data with R package iglu.
PLoS One. 2021 Apr 1;16(4):e0248560. doi: 10.1371/journal.pone.0248560. eCollection 2021.
6
MorphoTools2: an R package for multivariate morphometric analysis.
Bioinformatics. 2022 May 13;38(10):2954-2955. doi: 10.1093/bioinformatics/btac173.
7
nlive: an R package to facilitate the application of the sigmoidal and random changepoint mixed models.
BMC Med Res Methodol. 2023 Nov 3;23(1):257. doi: 10.1186/s12874-023-02075-4.
8
Expanded utility of the R package, qgg, with applications within genomic medicine.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad656.
9
UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data.
Bioinformatics. 2022 Jan 3;38(2):527-529. doi: 10.1093/bioinformatics/btab561.
10
mpwR: an R package for comparing performance of mass spectrometry-based proteomic workflows.
Bioinformatics. 2023 Jun 1;39(6). doi: 10.1093/bioinformatics/btad358.

引用本文的文献

1
Interpretable machine learning for high-dimensional trajectories of aging health.
PLoS Comput Biol. 2022 Jan 10;18(1):e1009746. doi: 10.1371/journal.pcbi.1009746. eCollection 2022 Jan.

本文引用的文献

3
Joint Analyses of Longitudinal and Time-to-Event Data in Research on Aging: Implications for Predicting Health and Survival.
Front Public Health. 2014 Nov 6;2:228. doi: 10.3389/fpubh.2014.00228. eCollection 2014.
4
The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective.
Lancet. 2014 Mar 15;383(9921):999-1008. doi: 10.1016/S0140-6736(13)61752-3. Epub 2013 Sep 29.
5
The quadratic hazard model for analyzing longitudinal data on aging, health, and the life span.
Phys Life Rev. 2012 Jun;9(2):177-88; discussion 195-7. doi: 10.1016/j.plrev.2012.05.002. Epub 2012 May 17.
6
Age trajectories of physiological indices in relation to healthy life course.
Mech Ageing Dev. 2011 Mar;132(3):93-102. doi: 10.1016/j.mad.2011.01.001. Epub 2011 Jan 22.
7
Maintaining physiological state for exceptional survival: What is the normal level of blood glucose and does it change with age?
Mech Ageing Dev. 2009 Sep;130(9):611-8. doi: 10.1016/j.mad.2009.07.004. Epub 2009 Jul 25.
8
Genetic model for longitudinal studies of aging, health, and longevity and its potential application to incomplete data.
J Theor Biol. 2009 May 7;258(1):103-11. doi: 10.1016/j.jtbi.2009.01.023. Epub 2009 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验