Suppr超能文献

三维电阻抗断层成像前列腺探头的灵敏度研究与优化

Sensitivity study and optimization of a 3D electric impedance tomography prostate probe.

作者信息

Borsic A, Halter R, Wan Y, Hartov A, Paulsen K D

机构信息

Thayer School of Engineering, Dartmouth College, 8000 Cummings Hall Hanover, NH 03755, USA.

出版信息

Physiol Meas. 2009 Jun;30(6):S1-18. doi: 10.1088/0967-3334/30/6/S01. Epub 2009 Jun 2.

Abstract

In current clinical practice, the primary diagnostic method for testing for prostate cancer is ultrasound-guided biopsy. In this paper, we consider using a sonolucent array of electrodes, printed on a thin Kapton layer and positioned on the imaging window of a transrectal ultrasound probe, as a method for providing coregistered electrical and ultrasound imaging of the prostate. As the electrical properties of malignant tissues have been shown to differ significantly from benign tissues, the estimation of the electrical properties is expected to be helpful in distinguishing certain beginning pathologies from cancer and in improving the detection rate that current biopsy methods provide. One of the main difficulties in estimating electrical properties of tissues with this electrode configuration is the rapid decay of the sensitivity with distance from the sensing array. In order to partially overcome this difficulty, we propose to use prior information from the ultrasound (US). Specifically we intend to delineate the boundaries of the prostate from the US, to subdivide the organ into a small number of voxels and to estimate the conductivity as constant on each of these subvolumes. We use a 3D forward model based on the finite element method for studying the sensitivity of a simulated segmented prostate for three different electrode array designs. The three designs present different electrode areas and inter-electrode gaps. Larger electrodes are desirable as they present a better contact, but we show that as they result in smaller inter-electrode gaps, shunting currents can be significant and the sensitivity is reduced. Because our clinical measurement system employs a single current source, we consider tetrapolar measurement patterns for evaluating these electrode configurations. Optimal measurement patterns are well defined for adaptive systems, where multiple currents are injected at the same time. For the electrode array designs we consider, which are three dimensional, there are no established systematic methods for forming sets of linearly independent tetrapolar measurement patterns. We develop a novel method for automatically computing a full set of independent tetrapolar measurement patterns that maximizes the sensitivity in a region of interest (ROI). We use these patterns in the forward modeling and sensitivity studies. In addition to the electrode arrays on the probe, we study the use of a further configuration, where a distal electrode is positioned on the exterior of the body and used for current injection.

摘要

在当前临床实践中,前列腺癌检测的主要诊断方法是超声引导活检。在本文中,我们考虑使用一种印在薄聚酰亚胺层上并置于经直肠超声探头成像窗口的透声电极阵列,作为一种提供前列腺电成像与超声成像配准的方法。由于已表明恶性组织的电学特性与良性组织有显著差异,因此电学特性的估计有望有助于区分某些早期病变与癌症,并提高当前活检方法的检测率。使用这种电极配置估计组织电学特性的主要困难之一是灵敏度随距传感阵列距离的快速衰减。为了部分克服这一困难,我们建议使用来自超声(US)的先验信息。具体而言,我们打算从超声中勾勒出前列腺的边界,将该器官细分为少量体素,并估计每个这些子体积上的电导率为常数。我们使用基于有限元方法的三维正向模型来研究模拟分段前列腺对于三种不同电极阵列设计的灵敏度。这三种设计具有不同的电极面积和电极间距。较大的电极更可取,因为它们具有更好的接触,但我们表明,由于它们会导致较小的电极间距,分流电流可能会很大且灵敏度会降低。因为我们的临床测量系统采用单个电流源,所以我们考虑使用四极测量模式来评估这些电极配置。对于自适应系统,其中同时注入多个电流,最优测量模式是明确的。对于我们考虑的三维电极阵列设计,没有既定的系统方法来形成线性独立的四极测量模式集。我们开发了一种新颖的方法来自动计算一组完整的独立四极测量模式,该模式能在感兴趣区域(ROI)中最大化灵敏度。我们在正向建模和灵敏度研究中使用这些模式。除了探头上的电极阵列,我们还研究了另一种配置的使用,即一个远端电极置于身体外部并用于电流注入。

相似文献

1
Sensitivity study and optimization of a 3D electric impedance tomography prostate probe.
Physiol Meas. 2009 Jun;30(6):S1-18. doi: 10.1088/0967-3334/30/6/S01. Epub 2009 Jun 2.
3
Evaluation of different stimulation and measurement patterns based on internal electrode: application in cardiac impedance tomography.
Comput Biol Med. 2012 Nov;42(11):1122-32. doi: 10.1016/j.compbiomed.2012.09.004. Epub 2012 Sep 25.
4
Electrical impedance endo-tomography: imaging tissue from inside.
IEEE Trans Med Imaging. 2002 Jun;21(6):560-5. doi: 10.1109/TMI.2002.800610.
5
Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate.
Physiol Meas. 2012 May;33(5):719-38. doi: 10.1088/0967-3334/33/5/719. Epub 2012 Apr 24.
6
Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate.
Physiol Meas. 2010 Aug;31(8):S1-16. doi: 10.1088/0967-3334/31/8/S01. Epub 2010 Jul 21.
7
Lobe based image reconstruction in Electrical Impedance Tomography.
Med Phys. 2017 Feb;44(2):426-436. doi: 10.1002/mp.12038. Epub 2017 Jan 25.
8
Using compound electrodes in electrical impedance tomography.
IEEE Trans Biomed Eng. 1993 Jan;40(1):29-34. doi: 10.1109/10.204768.
9
Optimization of Tetrapolar Impedance Electrodes in Microfluidic Devices for Point of Care Diagnostics using Finite Element Modeling.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:5321-5324. doi: 10.1109/EMBC.2018.8513467.
10
The complete electrode model for imaging and electrode contact compensation in electrical impedance tomography.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:3462-5. doi: 10.1109/IEMBS.2007.4353076.

引用本文的文献

1
Three-dimensional Pulmonary Monitoring Using Focused Electrical Impedance Measurements.
J Electr Bioimpedance. 2018 Dec 31;9(1):84-95. doi: 10.2478/joeb-2018-0013. eCollection 2018 Jan.
2
Phantom Studies of Fused-Data TREIT Using Only Biopsy-Probe Electrodes.
IEEE Trans Med Imaging. 2020 Nov;39(11):3367-3378. doi: 10.1109/TMI.2020.2992453. Epub 2020 Oct 28.
3
A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection.
Physiol Meas. 2014 Apr;35(4):567-81. doi: 10.1088/0967-3334/35/4/567. Epub 2014 Mar 12.
5
Incorporating a biopsy needle as an electrode in transrectal electrical impedance imaging.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6220-3. doi: 10.1109/EMBC.2012.6347415.
6
Anatomically accurate hard priors for transrectal electrical impedance tomography (TREIT) of the prostate.
Physiol Meas. 2012 May;33(5):719-38. doi: 10.1088/0967-3334/33/5/719. Epub 2012 Apr 24.
7
Electrical impedance tomography reconstruction for three-dimensional imaging of the prostate.
Physiol Meas. 2010 Aug;31(8):S1-16. doi: 10.1088/0967-3334/31/8/S01. Epub 2010 Jul 21.
8
Sensitivity study of an ultrasound coupled transrectal electrical impedance tomography system for prostate imaging.
Physiol Meas. 2010 Aug;31(8):S17-29. doi: 10.1088/0967-3334/31/8/S02. Epub 2010 Jul 21.
9
Electrical properties of prostatic tissues: II. Spectral admittivity properties.
J Urol. 2009 Oct;182(4):1608-13. doi: 10.1016/j.juro.2009.06.013. Epub 2009 Aug 15.

本文引用的文献

1
3D electric impedance tomography reconstruction on multi-core computing platforms.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1175-7. doi: 10.1109/IEMBS.2008.4649371.
2
Genetic and least squares algorithms for estimating spectral EIS parameters of prostatic tissues.
Physiol Meas. 2008 Jun;29(6):S111-23. doi: 10.1088/0967-3334/29/6/S10. Epub 2008 Jun 10.
3
Electrical impedance spectroscopy of benign and malignant prostatic tissues.
J Urol. 2008 Apr;179(4):1580-6. doi: 10.1016/j.juro.2007.11.043. Epub 2008 Mar 4.
4
Cancer statistics, 2008.
CA Cancer J Clin. 2008 Mar-Apr;58(2):71-96. doi: 10.3322/CA.2007.0010. Epub 2008 Feb 20.
5
Distinguishability of conductivities by electric current computed tomography.
IEEE Trans Med Imaging. 1986;5(2):91-5. doi: 10.1109/TMI.1986.4307752.
6
Effect of dimensions and volume of the prostate on cancer detection rate of 12 core prostate biopsy.
Int Urol Nephrol. 2007;39(2):525-9. doi: 10.1007/s11255-006-9078-5. Epub 2007 Feb 15.
7
Electrical impedance spectroscopy of the human prostate.
IEEE Trans Biomed Eng. 2007 Jul;54(7):1321-7. doi: 10.1109/TBME.2007.897331.
8
On optimal current patterns for electrical impedance tomography.
IEEE Trans Biomed Eng. 2005 Feb;52(2):238-48. doi: 10.1109/TBME.2004.840506.
9
Prostate cancer screening.
BJU Int. 2004 Nov;94(7):964-6. doi: 10.1111/j.1464-410X.2004.05187.x.
10
Krylov subspace iterative techniques: on the detection of brain activity with electrical impedance tomography.
IEEE Trans Med Imaging. 2002 Jun;21(6):596-603. doi: 10.1109/TMI.2002.800607.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验