Huang Carlos P, Lu Jente, Seon Hyeryung, Lee Abraham P, Flanagan Lisa A, Kim Ho-Young, Putnam Andrew J, Jeon Noo Li
Department of Biomedical Engineering, University of California, 3410 Natural Sciences II, Irvine, CA 92697-2715, USA.
Lab Chip. 2009 Jun 21;9(12):1740-8. doi: 10.1039/b818401a. Epub 2009 Mar 18.
Modeling the in vivo microenvironment typically involves placing cells in a three-dimensional (3D) extracellular matrix (ECM) in physiologically relevant context with respect to other cells. The mechanical and chemical features of 3D microenvironments play important roles in tissue engineering, tumor growth and metastasis, and in defining stem cell niches, and it is increasingly recognized that cells behave much differently when surrounded by a 3D ECM than when anchored to a 2D substrate. To create microenvironments that more closely mimic in vivo settings, here we describe a novel microfluidic device that allows multiple discrete constructs of 3D cell-laden hydrogels to be patterned in a sequence of simple steps. The microfluidic platform allows for real-time imaging of the interactions between multiple cell types exposed to both autocrine and paracrine signaling molecules, all within a 3D ECM environment. Detailed modeling determined that surface tension, hydrophobic interactions, and spatial geometry were important factors in containing the gels within distinct separate channels during the filling process. This allowed us to pattern multiple gel types side-by-side and pattern 3D gels spatially with tight dimensional control. Cells embedded in gels could be patterned by culturing MDA-MB-231 metastatic breast cancer cells and RAW 264.1 macrophage cells within distinct collagen type I and Matrigel ECM environments, respectively. Over a 7 day culture experiment, RAW cells invaded into neighboring gels containing MDA-MB-231 cells, but not into gels lacking cells. These studies demonstrate the versatility and potential of this new microfluidic platform to engineer 3D microscale architectures to investigate cell-cell and cell-matrix interactions.
对体内微环境进行建模通常涉及将细胞置于与其他细胞具有生理相关性的三维(3D)细胞外基质(ECM)中。3D微环境的机械和化学特性在组织工程、肿瘤生长和转移以及定义干细胞生态位方面发挥着重要作用,并且人们越来越认识到,细胞被3D ECM包围时的行为与锚定在二维基质上时的行为有很大不同。为了创建更接近体内环境的微环境,我们在此描述一种新型微流控装置,该装置允许通过一系列简单步骤对多个离散的载有细胞的3D水凝胶构建体进行图案化。该微流控平台允许在3D ECM环境中对暴露于自分泌和旁分泌信号分子的多种细胞类型之间的相互作用进行实时成像。详细建模确定,表面张力、疏水相互作用和空间几何形状是在填充过程中将凝胶包含在不同独立通道内的重要因素。这使我们能够并排图案化多种凝胶类型,并在严格的尺寸控制下对3D凝胶进行空间图案化。可以通过分别在不同的I型胶原蛋白和基质胶ECM环境中培养MDA-MB-231转移性乳腺癌细胞和RAW 264.1巨噬细胞,对嵌入凝胶中的细胞进行图案化。在为期7天的培养实验中,RAW细胞侵入了含有MDA-MB-231细胞的相邻凝胶中,但未侵入不含细胞的凝胶中。这些研究证明了这种新型微流控平台在设计3D微观结构以研究细胞-细胞和细胞-基质相互作用方面的多功能性和潜力。