Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
J Mol Biol. 2010 Apr 16;397(5):1350-71. doi: 10.1016/j.jmb.2010.02.003. Epub 2010 Feb 13.
For several class I aminoacyl-tRNA synthetases (aaRSs), the rate-determining step in aminoacylation is the dissociation of charged tRNA from the enzyme. In this study, the following factors affecting the release of the charged tRNA from aaRSs are computationally explored: the protonation states of amino acids and substrates present in the active site, and the presence and the absence of AMP and elongation factor Tu. Through molecular modeling, internal pK(a) calculations, and molecular dynamics simulations, distinct, mechanistically relevant post-transfer states with charged tRNA bound to glutamyl-tRNA synthetase from Thermus thermophilus (Glu-tRNA(Glu)) are considered. The behavior of these nonequilibrium states is characterized as a function of time using dynamical network analysis, local energetics, and changes in free energies to estimate transitions that occur during the release of the tRNA. The hundreds of nanoseconds of simulation time reveal system characteristics that are consistent with recent experimental studies. Energetic and network results support the previously proposed mechanism in which the transfer of amino acid to tRNA is accompanied by the protonation of AMP to H-AMP. Subsequent migration of proton to water reduces the stability of the complex and loosens the interface both in the presence and in the absence of AMP. The subsequent undocking of AMP or tRNA then proceeds along thermodynamically competitive pathways. Release of the tRNA acceptor stem is further accelerated by the deprotonation of the alpha-ammonium group on the charging amino acid. The proposed general base is Glu41, a residue binding the alpha-ammonium group that is conserved in both structure and sequence across nearly all class I aaRSs. This universal handle is predicted through pK(a) calculations to be part of a proton relay system for destabilizing the bound charging amino acid following aminoacylation. Addition of elongation factor Tu to the aaRS.tRNA complex stimulates the dissociation of the tRNA core and the tRNA acceptor stem.
对于几种 I 类氨酰-tRNA 合成酶(aaRSs),氨酰化的限速步骤是带电荷的 tRNA 从酶上的解离。在这项研究中,通过计算的方法来探索影响 aaRSs 中带电荷的 tRNA 释放的以下因素:活性位点中氨基酸和底物的质子化状态,以及 AMP 和延伸因子 Tu 的存在和不存在。通过分子建模、内部 pK(a)计算和分子动力学模拟,考虑了与来自嗜热栖热菌(Glu-tRNA(Glu))的谷氨酰-tRNA 合成酶结合的带电荷的 tRNA 的不同、机制相关的转移后状态。这些非平衡状态的行为作为时间的函数使用动力网络分析、局部能量学和自由能的变化来进行特征化,以估计在 tRNA 释放过程中发生的转变。数百纳秒的模拟时间揭示了与最近的实验研究一致的系统特征。能量和网络结果支持了先前提出的机制,其中将氨基酸转移到 tRNA 伴随着 AMP 质子化为 H-AMP。随后质子向水的迁移降低了复合物的稳定性,并在 AMP 存在和不存在的情况下都使界面变松。随后 AMP 或 tRNA 的脱附则沿着热力学竞争途径进行。带电荷氨基酸的α-铵基团去质子化进一步加速了 tRNA 受体茎的释放。所提出的通用碱是 Glu41,它是结合α-铵基团的残基,在几乎所有的 I 类 aaRSs 中在结构和序列上都是保守的。通过 pK(a)计算预测,这个通用的“把手”是一个质子传递系统的一部分,用于在氨酰化后破坏结合的带电荷氨基酸。延伸因子 Tu 添加到 aaRS.tRNA 复合物中会刺激 tRNA 核心和 tRNA 受体茎的解离。