Ciapaite Jolita, Nauciene Zita, Baniene Rasa, Wagner Marijke J, Krab Klaas, Mildaziene Vida
Centre of Environmental Research, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania.
FEBS J. 2009 Jul;276(13):3656-68. doi: 10.1111/j.1742-4658.2009.07084.x. Epub 2009 Jun 1.
Impaired mitochondrial function contributes to copper- and cadmium-induced cellular dysfunction. In this study, we used modular kinetic analysis and metabolic control analysis to assess how Cd(2+) and Cu(2+) ions affect the kinetics and control of oxidative phosphorylation in isolated rat liver mitochondria. For the analysis, the system was modularized in two ways: (a) respiratory chain, phosphorylation and proton leak; and (b) coenzyme Q reduction and oxidation, with the membrane potential (Delta psi) and fraction of reduced coenzyme Q as the connecting intermediate, respectively. Modular kinetic analysis results indicate that both Cd(2+) and Cu(2+) ions inhibited the respiratory chain downstream of coenzyme Q. Moreover, Cu(2+), but not Cd(2+) ions stimulated proton leak kinetics at high Delta psi values. Further analysis showed that this difference can be explained by Cu(2+) ion-induced production of reactive oxygen species and membrane lipid peroxidation. In agreement with modular kinetic analysis data, metabolic control analysis showed that Cd(2+) and Cu(2+) ions increased control of the respiratory and phosphorylation flux by the respiratory chain module (mainly because of an increase in the control exerted by cytochrome bc(1) and cytochrome c oxidase), decreased control by the phosphorylation module and increased negative control of the phosphorylation flux by the proton leak module. In summary, we showed that there is a subtle difference in the mode of action of Cd(2+) and Cu(2+) ions on the mitochondrial function, which is related to the ability of Cu(2+) ions to induce reactive oxygen species production and lipid peroxidation.
线粒体功能受损会导致铜和镉诱导的细胞功能障碍。在本研究中,我们使用模块化动力学分析和代谢控制分析来评估Cd(2+)和Cu(2+)离子如何影响分离的大鼠肝线粒体中氧化磷酸化的动力学和调控。为了进行分析,系统以两种方式进行模块化:(a)呼吸链、磷酸化和质子泄漏;(b)辅酶Q的还原和氧化,分别以膜电位(Δψ)和还原型辅酶Q的比例作为连接中间体。模块化动力学分析结果表明,Cd(2+)和Cu(2+)离子均抑制辅酶Q下游的呼吸链。此外,在高Δψ值时,Cu(2+)离子而非Cd(2+)离子刺激质子泄漏动力学。进一步分析表明,这种差异可以由Cu(2+)离子诱导的活性氧生成和膜脂质过氧化来解释。与模块化动力学分析数据一致,代谢控制分析表明,Cd(2+)和Cu(2+)离子增加了呼吸链模块对呼吸和磷酸化通量的调控(主要是由于细胞色素bc(1)和细胞色素c氧化酶施加的调控增加),降低了磷酸化模块的调控,并增加了质子泄漏模块对磷酸化通量的负调控。总之,我们表明Cd(2+)和Cu(2+)离子对线粒体功能的作用模式存在细微差异,这与Cu(2+)离子诱导活性氧生成和脂质过氧化的能力有关。