Centre of Environmental Research, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
Int J Hyperthermia. 2010 Feb;26(1):56-66. doi: 10.3109/02656730903262140.
Molecular mechanisms underlying hyperthermia-induced cellular injury are not fully understood. The aim of this study was to identify the components of mitochondrial oxidative phosphorylation affected by mild hyperthermia and to quantify the contribution of each component to changes in system behaviour.
Temperature effects on the oxidative phosphorylation in isolated rat-heart mitochondria were assessed using modular kinetic analysis. Mitochondrial H(2)O(2) production and lipid peroxidation were measured for estimation of temperature-induced oxidative damage.
The increase of temperature in the febrile range (40 degrees C) slightly activated mitochondrial function through stimulation of the respiratory module, without affecting the kinetics of the proton leak and phosphorylation modules. At 42 degrees C, state 3 respiration rate remained unchanged, the proton leak across the inner mitochondrial membrane was substantially increased, the respiratory module slightly inhibited, leading to decreased membrane potential (Deltapsi) and diminished ATP synthesis (16% lower phosphorylation flux). Increase of temperature above 42 degrees C caused dissipation of Deltapsi and abolishment of ATP synthesis indicating complete uncoupling of oxidative phosphorylation. The changes in mitochondrial functions induced by incubation at 42 degrees C were completely reversible in contrast to only partial recovery after incubation at higher temperature (45 degrees C). Furthermore, hyperthermia stimulated the production of H(2)O(2) and membrane lipid peroxidation with maximal rates observed at 40 degrees C.
We demonstrated for the first time that febrile temperature (40 degrees C) activates mitochondrial energy supplying functions, whereas further temperature increase by only a few degrees leads to severe impairment of mitochondrial ability to maintain DeltaPsi and synthesise ATP.
高热诱导细胞损伤的分子机制尚不完全清楚。本研究旨在确定轻度热疗影响的线粒体氧化磷酸化成分,并定量分析每个成分对系统行为变化的贡献。
使用模块化动力学分析评估分离的大鼠心脏线粒体中氧化磷酸化对温度的影响。测量线粒体 H2O2 产生和脂质过氧化,以评估温度诱导的氧化损伤。
在发热范围内(40°C)升高温度通过刺激呼吸模块轻微激活线粒体功能,而不影响质子泄漏和磷酸化模块的动力学。在 42°C 时,呼吸状态 3 的速率保持不变,线粒体内膜的质子泄漏显著增加,呼吸模块受到轻微抑制,导致膜电位(Deltapsi)降低和 ATP 合成减少(磷酸化通量降低 16%)。温度升高超过 42°C 导致 Deltapsi 耗散和 ATP 合成完全停止,表明氧化磷酸化完全解偶联。与在更高温度(45°C)孵育后仅部分恢复相比,42°C 孵育引起的线粒体功能变化是完全可逆的。此外,热疗刺激 H2O2 的产生和膜脂质过氧化,最大速率出现在 40°C。
我们首次证明,发热温度(40°C)激活线粒体供能功能,而仅升高几度就会导致线粒体维持 Deltapsi 和合成 ATP 的能力严重受损。