Leandro La Rotta Pedro, Xu Jingxi, Chen Ava, Winterbottom Lauren, Chen Wenxi, Nilsen Dawn, Stein Joel, Ciocarlie Matei
Department of Mechanical Engineering, Columbia University in the City of New York, NY, USA.
Department of Computer Science, Columbia University in the City of New York, NY, USA.
Rep U S. 2024 Oct;2024:4693-4700. doi: 10.1109/iros58592.2024.10801596. Epub 2024 Dec 25.
We propose MetaEMG, a meta-learning approach for fast adaptation in intent inferral on a robotic hand orthosis for stroke. One key challenge in machine learning for assistive and rehabilitative robotics with disabled-bodied subjects is the difficulty of collecting labeled training data. Muscle tone and spasticity often vary significantly among stroke subjects, and hand function can even change across different use sessions of the device for the same subject. We investigate the use of meta-learning to mitigate the burden of data collection needed to adapt high-capacity neural networks to a new session or subject. Our experiments on real clinical data collected from five stroke subjects show that MetaEMG can improve the intent inferral accuracy with a small session- or subject-specific dataset and very few fine-tuning epochs. To the best of our knowledge, we are the first to formulate intent inferral on stroke subjects as a meta-learning problem and demonstrate fast adaptation to a new session or subject for controlling a robotic hand orthosis with EMG signals.
我们提出了MetaEMG,一种用于中风患者机器人手部矫形器意图推断快速适应的元学习方法。对于身体有残疾的受试者的辅助和康复机器人的机器学习,一个关键挑战是收集标记训练数据的困难。中风患者的肌张力和痉挛通常差异很大,即使是同一受试者在使用该设备的不同时段,手部功能也可能发生变化。我们研究使用元学习来减轻使高容量神经网络适应新时段或新受试者所需的数据收集负担。我们对从五名中风患者收集的真实临床数据进行的实验表明,MetaEMG可以通过一个小的特定时段或特定受试者的数据集以及极少的微调轮次来提高意图推断的准确性。据我们所知,我们是第一个将中风患者的意图推断表述为元学习问题,并展示如何通过肌电信号快速适应新时段或新受试者以控制机器人手部矫形器的。