Suppr超能文献

用于中风患者机器人手部矫形器意图推断中快速适应的元学习

Meta-Learning for Fast Adaptation in Intent Inferral on a Robotic Hand Orthosis for Stroke.

作者信息

Leandro La Rotta Pedro, Xu Jingxi, Chen Ava, Winterbottom Lauren, Chen Wenxi, Nilsen Dawn, Stein Joel, Ciocarlie Matei

机构信息

Department of Mechanical Engineering, Columbia University in the City of New York, NY, USA.

Department of Computer Science, Columbia University in the City of New York, NY, USA.

出版信息

Rep U S. 2024 Oct;2024:4693-4700. doi: 10.1109/iros58592.2024.10801596. Epub 2024 Dec 25.

Abstract

We propose MetaEMG, a meta-learning approach for fast adaptation in intent inferral on a robotic hand orthosis for stroke. One key challenge in machine learning for assistive and rehabilitative robotics with disabled-bodied subjects is the difficulty of collecting labeled training data. Muscle tone and spasticity often vary significantly among stroke subjects, and hand function can even change across different use sessions of the device for the same subject. We investigate the use of meta-learning to mitigate the burden of data collection needed to adapt high-capacity neural networks to a new session or subject. Our experiments on real clinical data collected from five stroke subjects show that MetaEMG can improve the intent inferral accuracy with a small session- or subject-specific dataset and very few fine-tuning epochs. To the best of our knowledge, we are the first to formulate intent inferral on stroke subjects as a meta-learning problem and demonstrate fast adaptation to a new session or subject for controlling a robotic hand orthosis with EMG signals.

摘要

我们提出了MetaEMG,一种用于中风患者机器人手部矫形器意图推断快速适应的元学习方法。对于身体有残疾的受试者的辅助和康复机器人的机器学习,一个关键挑战是收集标记训练数据的困难。中风患者的肌张力和痉挛通常差异很大,即使是同一受试者在使用该设备的不同时段,手部功能也可能发生变化。我们研究使用元学习来减轻使高容量神经网络适应新时段或新受试者所需的数据收集负担。我们对从五名中风患者收集的真实临床数据进行的实验表明,MetaEMG可以通过一个小的特定时段或特定受试者的数据集以及极少的微调轮次来提高意图推断的准确性。据我们所知,我们是第一个将中风患者的意图推断表述为元学习问题,并展示如何通过肌电信号快速适应新时段或新受试者以控制机器人手部矫形器的。

相似文献

3
Knee orthoses for treating patellofemoral pain syndrome.用于治疗髌股疼痛综合征的膝关节矫形器。
Cochrane Database Syst Rev. 2015 Dec 8;2015(12):CD010513. doi: 10.1002/14651858.CD010513.pub2.
6
Interventions to prevent occupational noise-induced hearing loss.预防职业性噪声性听力损失的干预措施。
Cochrane Database Syst Rev. 2017 Jul 7;7(7):CD006396. doi: 10.1002/14651858.CD006396.pub4.

本文引用的文献

9
Towards Zero Retraining for Myoelectric Control Based on Common Model Component Analysis.基于通用模型成分分析的肌电控制零再训练方法
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):444-54. doi: 10.1109/TNSRE.2015.2420654. Epub 2015 Apr 13.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验