Plück Anne, Klasen Christian
Centre for Mouse Genetics, Institute for Genetics, University of Cologne, Cologne, Germany.
Methods Mol Biol. 2009;561:199-217. doi: 10.1007/978-1-60327-019-9_13.
Since the technique of introducing a targeted mutation ('gene targeting') into the mouse genome was published almost 20 years ago (Cell 51:503-512, 1987), the number of mouse mutants (mouse models) is increasing, especially after the advent of the full mouse genomic sequence in 2002 and the human genomic sequences in 2003 that reveals more and more large stretches of similarity between the two species at the genomic level. This chapter describes the tools and the experimental route of targeted manipulation by microinjection in the mouse using targeted embryonic stem cells (ES cells).The techniques have become standardized over recent years (Nature 309:255-256, 1984; Practical Approach. IRL Press, Oxford, 254 pp, 1987; Science 240:1468-1475, 1988; Practical Approach. IRL Press, Oxford, New York, 1993; Transgenic Animal Technology: A Laboratory Handbook, 2nd edition. Academic Press, San Deigo, 2002; Manipulating the Mouse Embryo - A Laboratory Manual, 3rd edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 2003) and basically two methods have been used to generate chimeric mice that transmit the mutation of interest via the ES cell genome to the offspring:Microinjection of ES cells into blastocyst or morula stage embryos (this chapter) or aggregation of ES cells with morula stage embryos (see Chapter 14 ).Microinjection of ES cells into the blastocoel (cavity) of the blastocyst stage embryo and also morula injections using micropipettes driven by micromanipulators require sophisticated manual skills and an expensive phase contrast inverted microscope. Although most commonly used, it is quite expensive to establish this technique in a laboratory, in particular, if piezo- or laser- supported routes come into play. Although the establishment of germ-line potent ES cells was first published in 1981 (Proc Natl Acad Sci U S A 78:7634-7636, 1981; Nature 292:154-156, 1981), up to now it has not been possible to establish germ-line transmitting ES cells from any other mammalian species, not even from rat which is closely related, nor was it possible to introduce targeted mutations by different means to the germ-line of mammals. After 20 years, the mouse is still the only mammalian species where mutations can be introduced in a targeted manner and therefore it is very important to many fields in biology, like immunology, neurobiology, and developmental biology to study gene function and disease. Through means of introducing even point mutations to single relevant molecules of a signal transduction pathway in order to study regulation of cellular and physiological processes in complex organisms in a tissue specific or inducible manner (conditional gene targeting, (Cell 73:1155-1164, 1993; Science 265:103-106, 1994)), more recently the field has expanded exponentially.
自从大约20年前(《细胞》杂志,第51卷,第503 - 512页,1987年)发表了将靶向突变(“基因靶向”)引入小鼠基因组的技术以来,小鼠突变体(小鼠模型)的数量一直在增加,尤其是在2002年小鼠全基因组序列以及2003年人类基因组序列问世之后,这揭示了两个物种在基因组水平上越来越多的大片段相似性。本章描述了使用靶向胚胎干细胞(ES细胞)通过显微注射在小鼠中进行靶向操作的工具和实验途径。近年来这些技术已经标准化(《自然》杂志,第309卷,第255 - 256页,1984年;《实用方法》。IRL出版社,牛津,254页,1987年;《科学》杂志,第240卷,第1468 - 1475页,1988年;《实用方法》。IRL出版社,牛津,纽约,1993年;《转基因动物技术:实验室手册》,第2版。学术出版社,圣地亚哥,2002年;《操作小鼠胚胎 - 实验室手册》,第3版。冷泉港实验室出版社,纽约州冷泉港,2003年),并且基本上有两种方法用于产生通过ES细胞基因组将感兴趣的突变传递给后代的嵌合小鼠:将ES细胞显微注射到囊胚或桑葚胚阶段的胚胎中(本章内容)或ES细胞与桑葚胚阶段的胚胎聚合(见第14章)。将ES细胞显微注射到囊胚阶段胚胎的囊胚腔(腔)中以及使用由显微操作器驱动的微量移液器进行桑葚胚注射需要复杂的手工技能和一台昂贵的相差倒置显微镜。尽管是最常用的方法,但在实验室中建立这项技术相当昂贵,特别是如果涉及压电或激光辅助途径的话。尽管1981年首次发表了具有种系潜能的ES细胞的建立(《美国国家科学院院刊》,第78卷,第7634 - 7636页,1981年;《自然》杂志,第292卷,第154 - 156页,1981年),但到目前为止,还无法从任何其他哺乳动物物种建立种系传递的ES细胞,甚至与小鼠亲缘关系很近的大鼠也不行,而且也不可能通过不同方法将靶向突变引入哺乳动物的种系。20年后,小鼠仍然是唯一能够以靶向方式引入突变的哺乳动物物种,因此对于生物学的许多领域,如免疫学、神经生物学和发育生物学,研究基因功能和疾病非常重要。通过引入甚至是信号转导途径单个相关分子的点突变,以便以组织特异性或可诱导的方式(条件性基因靶向,(《细胞》杂志,第73卷,第1155 - 1164页,1993年;《科学》杂志,第265卷,第103 - 106页,1994年))研究复杂生物体中细胞和生理过程的调控,该领域最近呈指数级扩展。