Suppr超能文献

评估碘处理滤材对 MS2 噬菌体气溶胶的去除和灭活效果。

Assessment of iodine-treated filter media for removal and inactivation of MS2 bacteriophage aerosols.

机构信息

Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611-6450, USA.

出版信息

J Appl Microbiol. 2009 Dec 1;107(6):1912-23. doi: 10.1111/j.1365-2672.2009.04375.x. Epub 2009 May 12.

Abstract

AIMS

To investigate the performance of an iodine-releasing filter medium for use as a protective device against airborne pathogens.

METHODS AND RESULTS

The filter's physical and viable removal efficiencies (VRE) were investigated with challenges of MS2 bacteriophage aerosols, and the infectivity of MS2 collected on the filter was analysed. To test a proposed inactivation mechanism, media containing thiosulfate or bovine serum albumin (BSA) were put in impingers to quench and consume I(2) released from the filter. In direct plating experiments, treated filters presented significantly higher VREs than did untreated filters; however, collection in excess BSA decreased VRE by half and in thiosulfate the apparent VRE decreased drastically. No significant difference in infectivity of retained viruses on treated and untreated filters was observed at the same environmental condition.

CONCLUSIONS

Evidence presented herein for competition by dissolved I(2) in infectivity assays supports a mechanism of induced displacement and capture of I(2.) It also requires that dissociation of iodine from the filter and capture of iodine by MS2 aerosols as they pass through the filter be factored in the design of the assessment methodology. The filter's strong retention capability minimizes reaerosolization but also makes it difficult to discriminate the antimicrobial effect at the surface.

SIGNIFICANCE AND IMPACT OF THE STUDY

This study shows the direct plating assay method to be sensitive to interference by iodine-releasing materials. This requires reevaluation of earlier reports of VRE measurements.

摘要

目的

研究一种释放碘的过滤介质作为防止空气传播病原体的保护装置的性能。

方法和结果

用 MS2 噬菌体气溶胶进行挑战,研究了过滤器的物理和有效去除效率(VRE),并分析了收集在过滤器上的 MS2 的感染性。为了测试一种拟议的失活动力学机制,将含有硫代硫酸盐或牛血清白蛋白(BSA)的介质放入冲击瓶中,以淬灭和消耗从过滤器中释放的 I2。在直接平板实验中,处理过的过滤器的 VRE 明显高于未处理的过滤器;然而,在过量 BSA 中的收集使 VRE 降低了一半,而在硫代硫酸盐中,VRE 明显急剧降低。在相同的环境条件下,处理过的和未处理的过滤器上截留的病毒的感染性没有观察到显著差异。

结论

本文提供的关于溶解 I2 在感染性测定中竞争的证据支持诱导置换和捕获 I2 的机制。这也要求在评估方法的设计中考虑到碘从过滤器上解离以及碘被通过过滤器的 MS2 气溶胶捕获。过滤器的强保留能力最大限度地减少了再气溶胶化,但也使得难以区分表面的抗菌效果。

研究的意义和影响

本研究表明,直接平板测定方法对释放碘的材料的干扰敏感。这需要重新评估早期报道的 VRE 测量结果。

相似文献

1
Assessment of iodine-treated filter media for removal and inactivation of MS2 bacteriophage aerosols.
J Appl Microbiol. 2009 Dec 1;107(6):1912-23. doi: 10.1111/j.1365-2672.2009.04375.x. Epub 2009 May 12.
2
Effectiveness of the Nanosilver/TiO-Chitosan Antiviral Filter on the Removal of Viral Aerosols.
J Aerosol Med Pulm Drug Deliv. 2021 Sep;34(5):293-302. doi: 10.1089/jamp.2020.1607. Epub 2021 Mar 23.
3
Aerosol-phase activity of iodine captured from a triiodide resin filter on fine particles containing an infectious virus.
J Appl Microbiol. 2015 Jun;118(6):1315-20. doi: 10.1111/jam.12788. Epub 2015 Mar 27.
4
An evaluation of the microbial retention performance of three ventilator-circuit filters.
Intensive Care Med. 1994;20(3):233-7. doi: 10.1007/BF01704708.
5
Efficacy of iodine-treated biocidal filter media against bacterial spore aerosols.
J Appl Microbiol. 2008 Nov;105(5):1318-26. doi: 10.1111/j.1365-2672.2008.03855.x. Epub 2008 Jun 18.
9
Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.
J Hazard Mater. 2016 Jan 15;301:547-53. doi: 10.1016/j.jhazmat.2015.09.017. Epub 2015 Sep 11.
10
Inactivation of filter bound aerosolized MS2 bacteriophages using a non-conductive ultrasound transducer.
J Virol Methods. 2018 May;255:76-81. doi: 10.1016/j.jviromet.2018.02.015. Epub 2018 Feb 21.

引用本文的文献

1
How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight.
Int J Mol Sci. 2023 Feb 23;24(5):4447. doi: 10.3390/ijms24054447.
2
A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus.
Air Qual Atmos Health. 2021;14(11):1811-1824. doi: 10.1007/s11869-021-01055-1. Epub 2021 Jun 17.
3
On-Mask Chemical Modulation of Respiratory Droplets.
Matter. 2020 Nov 4;3(5):1791-1810. doi: 10.1016/j.matt.2020.10.012. Epub 2020 Oct 29.
4
Determination of Air Filter Anti-Viral Efficiency against an Airborne Infectious Virus.
J Hazard Mater. 2020 Sep 5;396:122640. doi: 10.1016/j.jhazmat.2020.122640. Epub 2020 Apr 12.
5
Use of dialdehyde starch treated filters for protection against airborne viruses.
J Aerosol Sci. 2012 Apr;46:77-82. doi: 10.1016/j.jaerosci.2011.09.006. Epub 2011 Oct 8.
6
Development and evaluation of a novel bioaerosol amplification unit (BAU) for improved viral aerosol collection.
J Aerosol Sci. 2010 Sep;41(9):889-894. doi: 10.1016/j.jaerosci.2010.06.002. Epub 2010 Jun 15.
7
Method for contamination of filtering facepiece respirators by deposition of MS2 viral aerosols.
J Aerosol Sci. 2010 Oct;41(10):944-952. doi: 10.1016/j.jaerosci.2010.07.003. Epub 2010 Jul 8.
8
Performance of silver, zinc, and iron nanoparticles-doped cotton filters against airborne to minimize bioaerosol exposure.
Air Qual Atmos Health. 2018;11(10):1233-1242. doi: 10.1007/s11869-018-0622-0. Epub 2018 Sep 15.
9
Universal and reusable virus deactivation system for respiratory protection.
Sci Rep. 2017 Jan 4;7:39956. doi: 10.1038/srep39956.
10
Comparison of five bacteriophages as models for viral aerosol studies.
Appl Environ Microbiol. 2014 Jul;80(14):4242-50. doi: 10.1128/AEM.00767-14. Epub 2014 May 2.

本文引用的文献

1
Removal and retention of viral aerosols by a novel alumina nanofiber filter.
J Aerosol Sci. 2009 Jan;40(1):65-71. doi: 10.1016/j.jaerosci.2008.09.003. Epub 2008 Oct 7.
2
Efficacy of iodine-treated biocidal filter media against bacterial spore aerosols.
J Appl Microbiol. 2008 Nov;105(5):1318-26. doi: 10.1111/j.1365-2672.2008.03855.x. Epub 2008 Jun 18.
3
Do N95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks?
Am J Infect Control. 2006 Mar;34(2):51-7. doi: 10.1016/j.ajic.2005.08.018.
4
Airborne infectious disease and the suppression of pulmonary bioaerosols.
Drug Discov Today. 2006 Jan;11(1-2):51-7. doi: 10.1016/S1359-6446(05)03687-1.
5
Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles.
J Appl Microbiol. 2005;99(6):1422-34. doi: 10.1111/j.1365-2672.2005.02720.x.
6
Nanoparticles and the environment.
J Air Waste Manag Assoc. 2005 Jun;55(6):708-46. doi: 10.1080/10473289.2005.10464656.
7
Effects of antimicrobial treatment on fiberglass-acrylic filters.
J Appl Microbiol. 2004;97(2):371-7. doi: 10.1111/j.1365-2672.2004.02308.x.
8
The relative germicidal activity of tri-iodide and diatomic iodine.
J Bacteriol. 1955 Apr;69(4):413-7. doi: 10.1128/jb.69.4.413-417.1955.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验