Yamagata Yoko, Kobayashi Shizuka, Umeda Tatsuya, Inoue Akihiro, Sakagami Hiroyuki, Fukaya Masahiro, Watanabe Masahiko, Hatanaka Nobuhiko, Totsuka Masako, Yagi Takeshi, Obata Kunihiko, Imoto Keiji, Yanagawa Yuchio, Manabe Toshiya, Okabe Shigeo
Department of Information Physiology, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
J Neurosci. 2009 Jun 10;29(23):7607-18. doi: 10.1523/JNEUROSCI.0707-09.2009.
Ca2+/calmodulin-dependent protein kinase IIalpha (CaMKIIalpha) is an essential mediator of activity-dependent synaptic plasticity that possesses multiple protein functions. So far, the autophosphorylation site-mutant mice targeted at T286 and at T305/306 have demonstrated the importance of the autonomous activity and Ca2+/calmodulin-binding capacity of CaMKIIalpha, respectively, in the induction of long-term potentiation (LTP) and hippocampus-dependent learning. However, kinase activity of CaMKIIalpha, the most essential enzymatic function, has not been genetically dissected yet. Here, we generated a novel CaMKIIalpha knock-in mouse that completely lacks its kinase activity by introducing K42R mutation and examined the effects on hippocampal synaptic plasticity and behavioral learning. In homozygous CaMKIIalpha (K42R) mice, kinase activity was reduced to the same level as in CaMKIIalpha-null mice, whereas CaMKII protein expression was well preserved. Tetanic stimulation failed to induce not only LTP but also sustained dendritic spine enlargement, a structural basis for LTP, at the Schaffer collateral-CA1 synapse, whereas activity-dependent postsynaptic translocation of CaMKIIalpha was preserved. In addition, CaMKIIalpha (K42R) mice showed a severe impairment in inhibitory avoidance learning, a form of memory that is dependent on the hippocampus. These results demonstrate that kinase activity of CaMKIIalpha is a common critical gate controlling structural, functional, and behavioral expression of synaptic memory.
钙/钙调蛋白依赖性蛋白激酶IIα(CaMKIIα)是活性依赖性突触可塑性的重要介导因子,具有多种蛋白质功能。到目前为止,针对T286以及T305/306的自磷酸化位点突变小鼠已分别证明了CaMKIIα的自主活性和钙/钙调蛋白结合能力在长时程增强(LTP)诱导和海马依赖性学习中的重要性。然而,CaMKIIα最基本的酶促功能——激酶活性,尚未通过遗传学方法进行剖析。在此,我们通过引入K42R突变,构建了一种完全缺乏激酶活性的新型CaMKIIα基因敲入小鼠,并研究了其对海马突触可塑性和行为学习的影响。在纯合CaMKIIα(K42R)小鼠中,激酶活性降低至与CaMKIIα基因敲除小鼠相同的水平,而CaMKII蛋白表达则保持良好。强直刺激不仅未能诱导LTP,也未能在Schaffer侧支-CA1突触处诱导持续性树突棘增大(LTP的结构基础),而CaMKIIα的活性依赖性突触后转位则得以保留。此外,CaMKIIα(K42R)小鼠在抑制性回避学习(一种依赖海马的记忆形式)中表现出严重受损。这些结果表明,CaMKIIα的激酶活性是控制突触记忆的结构、功能和行为表达的共同关键闸门。