Norwegian University of Science and Technology, Dragvoll Idrettssenter, 7491, Trondheim, Norway.
Med Biol Eng Comput. 2009 Oct;47(10):1035-44. doi: 10.1007/s11517-009-0500-x. Epub 2009 Jun 12.
The present paper compares the performance of two Hilbert spectral analyses when applied to a synthetic RR series from a nonstationary integral pulse frequency modulation model and to real RR series from a dataset of normal sinus arrhythmia. The Hilbert-Huang transformation based on empirical mode decomposition is compared to the presently introduced Hilbert-Olhede-Walden transformation based on stationary wavelet packet decomposition. The comparison gives consistent results pointing to a superior performance of the Hilbert-Olhede-Walden transformation showing 33-163 times smaller deviations when estimating the instantaneous frequency traces of the synthetic RR series. Artificial fluctuations caused by mode mixing in the Hilbert-Huang spectrum are seen in both the synthetic and real RR series. It can be concluded that the instantaneous frequencies and amplitudes estimated by the Hilbert-Huang transformation should be interpreted with caution when investigating heart rate variability.
本文比较了两种希尔伯特谱分析方法在应用于非平稳积分脉冲频率调制模型的合成 RR 序列和正常窦性心律失常数据集的真实 RR 序列时的性能。基于经验模态分解的希尔伯特-黄变换与本文提出的基于平稳小波包分解的希尔伯特-奥尔赫德-沃尔登变换进行了比较。比较结果一致,表明希尔伯特-奥尔赫德-沃尔登变换在估计合成 RR 序列的瞬时频率轨迹时具有更好的性能,其偏差小 33-163 倍。在合成和真实 RR 序列中都可以看到希尔伯特-黄谱中由于模式混合引起的人为波动。可以得出结论,在研究心率变异性时,应该谨慎解释希尔伯特-黄变换估计的瞬时频率和幅度。