Suppr超能文献

长期心率变异性指标对慢性心力衰竭检测的判别能力。

Discrimination power of long-term heart rate variability measures for chronic heart failure detection.

机构信息

Department of Biomedical, Telecommunication and Electronic Engineering (DIBET), University of Naples Federico II, Naples, Italy.

出版信息

Med Biol Eng Comput. 2011 Jan;49(1):67-74. doi: 10.1007/s11517-010-0728-5. Epub 2011 Jan 4.

Abstract

The aim of this study was to investigate the discrimination power of standard long-term heart rate variability (HRV) measures for the diagnosis of chronic heart failure (CHF). The authors performed a retrospective analysis on four public Holter databases, analyzing the data of 72 normal subjects and 44 patients suffering from CHF. To assess the discrimination power of HRV measures, an exhaustive search of all possible combinations of HRV measures was adopted and classifiers based on Classification and Regression Tree (CART) method was developed, which is a non-parametric statistical technique. It was found that the best combination of features is: Total spectral power of all NN intervals up to 0.4 Hz (TOTPWR), square root of the mean of the sum of the squares of differences between adjacent NN intervals (RMSSD) and standard deviation of the averages of NN intervals in all 5-min segments of a 24-h recording (SDANN). The classifiers based on this combination achieved a specificity rate and a sensitivity rate of 100.00 and 89.74%, respectively. The results are comparable with other similar studies, but the method used is particularly valuable because it provides an easy to understand description of classification procedures, in terms of intelligible "if … then …" rules. Finally, the rules obtained by CART are consistent with previous clinical studies.

摘要

本研究旨在探讨标准长程心率变异性(HRV)指标对慢性心力衰竭(CHF)诊断的区分能力。作者对四个公开的动态心电图数据库进行了回顾性分析,分析了 72 名正常受试者和 44 名 CHF 患者的数据。为了评估 HRV 指标的区分能力,采用了对 HRV 指标的所有可能组合的穷尽搜索,并开发了基于分类和回归树(CART)方法的分类器,这是一种非参数统计技术。结果发现,最佳特征组合是:所有 NN 间期至 0.4 Hz 的总频谱功率(TOTPWR)、NN 间期均方根差的均方根(RMSSD)和 24 小时记录中所有 5 分钟段 NN 间期平均值的标准差(SDANN)。基于此组合的分类器的特异性率和敏感性率分别为 100.00%和 89.74%。这些结果与其他类似研究相当,但所使用的方法特别有价值,因为它以可理解的“如果……那么……”规则提供了分类过程的易于理解的描述。最后,CART 获得的规则与之前的临床研究一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验