University Eye Hospital, Wuerzburg, Germany.
Ophthalmic Physiol Opt. 2009 Jul;29(4):458-63. doi: 10.1111/j.1475-1313.2008.00629.x.
Matrix methods have a long tradition in paraxial physiological optics. They are especially suited to describe and handle optical systems in a simple and intuitive manner. While these methods are more and more applied to calculate the refractive power(s) of toric intraocular lenses (IOL), they are hardly used in routine IOL power calculations for cataract and refractive surgery, where analytical formulae are commonly utilized. Since these algorithms are also based on paraxial optics, matrix optics can offer rewarding approaches to standard IOL calculation tasks, as will be shown here. Some basic concepts of matrix optics are introduced and the system matrix for the eye is defined, and its application in typical IOL calculation problems is illustrated. Explicit expressions are derived to determine: predicted refraction for a given IOL power; necessary IOL power for a given target refraction; refractive power for a phakic IOL (PIOL); predicted refraction for a thick lens system. Numerical examples with typical clinical values are given for each of these expressions. It is shown that matrix optics can be applied in a straightforward and intuitive way to most problems of modern routine IOL calculation, in thick or thin lens approximation, for aphakic or phakic eyes.
矩阵方法在傍轴生理光学中有悠久的传统。它们特别适合以简单直观的方式描述和处理光学系统。虽然这些方法越来越多地应用于计算用于计算散光人工晶状体(IOL)的屈光力,但在白内障和屈光手术的常规 IOL 功率计算中很少使用,其中通常使用解析公式。由于这些算法也是基于傍轴光学的,因此矩阵光学可以为标准 IOL 计算任务提供有价值的方法,如下所示。本文介绍了矩阵光学的一些基本概念,定义了眼的系统矩阵,并说明了其在典型的 IOL 计算问题中的应用。推导出了用于确定以下内容的显式表达式:给定 IOL 屈光力的预测折射;给定目标折射所需的 IOL 屈光力;有晶状体眼人工晶状体(PIOL)的屈光力;厚透镜系统的预测折射。对于这些表达式中的每一个,都给出了具有典型临床值的数值示例。结果表明,矩阵光学可以在傍轴或薄透镜近似的情况下,在无晶状体或有晶状体眼的情况下,以简单直观的方式应用于现代常规 IOL 计算的大多数问题。