Suppr超能文献

在脑机接口中利用多种感觉模态。

Exploiting multiple sensory modalities in brain-machine interfaces.

机构信息

Department of Organismal Biology and Anatomy & Committee on Computational Neuroscience, University of Chicago, Chicago, IL 60637, USA.

出版信息

Neural Netw. 2009 Nov;22(9):1224-34. doi: 10.1016/j.neunet.2009.05.006. Epub 2009 May 22.

Abstract

Recent improvements in cortically-controlled brain-machine interfaces (BMIs) have raised hopes that such technologies may improve the quality of life of severely motor-disabled patients. However, current generation BMIs do not perform up to their potential due to the neglect of the full range of sensory feedback in their strategies for training and control. Here we confirm that neurons in the primary motor cortex (MI) encode sensory information and demonstrate a significant heterogeneity in their responses with respect to the type of sensory modality available to the subject about a reaching task. We further show using mutual information and directional tuning analyses that the presence of multi-sensory feedback (i.e. vision and proprioception) during replay of movements evokes neural responses in MI that are almost indistinguishable from those responses measured during overt movement. Finally, we suggest how these playback-evoked responses may be used to improve BMI performance.

摘要

最近皮质控制脑机接口(BMI)的改进提高了人们的希望,即这些技术可能会提高严重运动障碍患者的生活质量。然而,由于当前一代 BMI 在其训练和控制策略中忽略了全面的感官反馈,因此它们并没有发挥出全部潜力。在这里,我们证实初级运动皮层(MI)中的神经元对感官信息进行编码,并证明它们对主体在伸展任务中可获得的感官模式类型的反应具有明显的异质性。我们还通过互信息和方向调谐分析进一步表明,在回放运动期间存在多感官反馈(即视觉和本体感觉)会引起 MI 中的神经反应,这些反应几乎与在明显运动期间测量的反应无法区分。最后,我们提出了如何利用这些回放引起的反应来改善 BMI 的性能。

相似文献

1
Exploiting multiple sensory modalities in brain-machine interfaces.在脑机接口中利用多种感觉模态。
Neural Netw. 2009 Nov;22(9):1224-34. doi: 10.1016/j.neunet.2009.05.006. Epub 2009 May 22.

引用本文的文献

2
Clinical neuroscience and neurotechnology: An amazing symbiosis.临床神经科学与神经技术:一种惊人的共生关系。
iScience. 2022 Sep 16;25(10):105124. doi: 10.1016/j.isci.2022.105124. eCollection 2022 Oct 21.
3
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.使用任务特定子空间进行虚拟自我运动的皮质控制。
J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29.

本文引用的文献

1
The science of neural interface systems.神经接口系统科学
Annu Rev Neurosci. 2009;32:249-66. doi: 10.1146/annurev.neuro.051508.135241.
2
Observation-based learning for brain-machine interfaces.基于观察的脑机接口学习
Curr Opin Neurobiol. 2008 Dec;18(6):589-94. doi: 10.1016/j.conb.2008.09.016. Epub 2008 Nov 6.
7
Motor imagery.运动想象
J Physiol Paris. 2006 Jun;99(4-6):386-95. doi: 10.1016/j.jphysparis.2006.03.012. Epub 2006 May 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验