Suppr超能文献

灵长类运动皮层手指区与假肢控制相关的稳健触觉感知反应。

Robust tactile sensory responses in finger area of primate motor cortex relevant to prosthetic control.

机构信息

Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America.

出版信息

J Neural Eng. 2017 Aug;14(4):046016. doi: 10.1088/1741-2552/aa7329.

Abstract

OBJECTIVE

Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1.

APPROACH

We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus.

MAIN RESULTS

Units displaying significant differences in firing rates between individual fingers (p  <  0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9%  ±  24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects.

SIGNIFICANCE

These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.

摘要

目的

提高灵巧上肢脑机接口 (BMI) 性能所面临的挑战,促使人们重新关注量化初级运动皮层 (M1) 中自然编码的感觉信息量和类型。之前在猴子身上进行的单单元研究表明,M1 对手部触觉刺激、肢体被动和主动运动都有反应。然而,该领域最近的研究主要集中在本体感觉上。在这里,我们研究了手部和手指的触觉感觉是如何在 M1 中被表示的。

方法

我们记录了猕猴 M1 中的多单元和单单元活动,并在以 2 Hz 的频率轻轻刷单个指垫时对其进行阈值处理。我们还记录了放置在人类运动皮层上的脑电描记图 (ECoG) 网格的宽带神经活动,同时施加相同的触觉刺激。

主要结果

在四个猴子中,有高达 76.7%的分类多单元的放电率在单个手指之间存在显著差异(p  <  0.05)。在通过对具有显著运动手指反应的通道数量进行归一化后,具有显著触觉反应的电极百分比为 74.9%  ±  24.7%。在整个皮层中,手指偏好的躯体感觉组织并不明显,但许多单元在多个手指上表现出余弦样调谐。在所有猴子中,从多单元活动中解码刺激位置的信息,以及从两个人类对象的 ECoG 伽马功率中解码刺激位置的信息,都存在足够的感觉信息,超过了随机水平。

意义

这些结果为临床皮层控制假肢手试验中运动解码器所遇到的困难,以及灵巧任务中灵长类运动皮层中运动和感觉信号分离的一般问题提供了一些解释。此外,在触觉和本体感觉输入过程中检查单元调谐表明,在不同的情况下,细胞通常会以不同的方式调谐,这加强了对 BMI 训练和解码方法的持续改进的需求,以实现灵巧抓握的闭环 BMI 系统。

相似文献

2
Neural control of finger movement via intracortical brain-machine interface.
J Neural Eng. 2017 Dec;14(6):066004. doi: 10.1088/1741-2552/aa80bd.
3
Activity in the brain network for dynamic manipulation of unstable objects is robust to acute tactile nerve block: An fMRI study.
Brain Res. 2015 Sep 16;1620:98-106. doi: 10.1016/j.brainres.2015.05.016. Epub 2015 May 19.
4
Neuron selection based on deflection coefficient maximization for the neural decoding of dexterous finger movements.
IEEE Trans Neural Syst Rehabil Eng. 2015 May;23(3):374-84. doi: 10.1109/TNSRE.2014.2363193. Epub 2014 Oct 22.
6
Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject.
J Neural Eng. 2016 Apr;13(2):026017-26017. doi: 10.1088/1741-2560/13/2/026017. Epub 2016 Feb 10.
7
Mapping the Integration of Sensory Information across Fingers in Human Sensorimotor Cortex.
J Neurosci. 2022 Jun 29;42(26):5173-5185. doi: 10.1523/JNEUROSCI.2152-21.2022. Epub 2022 May 23.
8
Sequential activation of premotor, primary somatosensory and primary motor areas in humans during cued finger movements.
Clin Neurophysiol. 2015 Nov;126(11):2150-61. doi: 10.1016/j.clinph.2015.01.005. Epub 2015 Jan 23.
10
Structure of Population Activity in Primary Motor Cortex for Single Finger Flexion and Extension.
J Neurosci. 2020 Nov 25;40(48):9210-9223. doi: 10.1523/JNEUROSCI.0999-20.2020. Epub 2020 Oct 21.

引用本文的文献

3
Cortical Control of Virtual Self-Motion Using Task-Specific Subspaces.
J Neurosci. 2022 Jan 12;42(2):220-239. doi: 10.1523/JNEUROSCI.2687-20.2021. Epub 2021 Oct 29.
4
Effects of Peripheral Haptic Feedback on Intracortical Brain-Computer Interface Control and Associated Sensory Responses in Motor Cortex.
IEEE Trans Haptics. 2021 Oct-Dec;14(4):762-775. doi: 10.1109/TOH.2021.3072615. Epub 2021 Dec 17.
5
Comparison of signal decomposition techniques for analysis of human cortical signals.
J Neural Eng. 2020 Oct 13;17(5):056014. doi: 10.1088/1741-2552/abb63b.
6
Power Modulations of ECoG Alpha/Beta and Gamma Bands Correlate With Time-Derivative of Force During Hand Grasp.
Front Neurosci. 2020 Feb 14;14:100. doi: 10.3389/fnins.2020.00100. eCollection 2020.
7
Cortical Decoding of Individual Finger Group Motions Using ReFIT Kalman Filter.
Front Neurosci. 2018 Nov 5;12:751. doi: 10.3389/fnins.2018.00751. eCollection 2018.

本文引用的文献

1
Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject.
J Neural Eng. 2016 Apr;13(2):026017-26017. doi: 10.1088/1741-2560/13/2/026017. Epub 2016 Feb 10.
2
Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
IEEE Trans Neural Syst Rehabil Eng. 2016 May;24(5):521-31. doi: 10.1109/TNSRE.2015.2501752. Epub 2015 Nov 20.
3
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Sci Transl Med. 2015 Nov 11;7(313):313ra179. doi: 10.1126/scitranslmed.aac7328.
4
Clinical translation of a high-performance neural prosthesis.
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
5
A Top-Down Cortical Circuit for Accurate Sensory Perception.
Neuron. 2015 Jun 3;86(5):1304-16. doi: 10.1016/j.neuron.2015.05.006. Epub 2015 May 21.
6
Predictive motor control of sensory dynamics in auditory active sensing.
Curr Opin Neurobiol. 2015 Apr;31:230-8. doi: 10.1016/j.conb.2014.12.005. Epub 2015 Jan 13.
7
Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations.
J Neural Eng. 2015 Feb;12(1):016011. doi: 10.1088/1741-2560/12/1/016011. Epub 2014 Dec 16.
8
Restoring tactile and proprioceptive sensation through a brain interface.
Neurobiol Dis. 2015 Nov;83:191-8. doi: 10.1016/j.nbd.2014.08.029. Epub 2014 Sep 6.
9
Motor cortex feedback influences sensory processing by modulating network state.
Neuron. 2013 Aug 7;79(3):567-78. doi: 10.1016/j.neuron.2013.06.008. Epub 2013 Jul 11.
10
Neuroprosthetics: once more, with feeling.
Nature. 2013 May 9;497(7448):176-8. doi: 10.1038/497176a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验