Suppr超能文献

自动识别和截断复杂成像衍生的生物医学几何形状中的边界出口。

Automatic identification and truncation of boundary outlets in complex imaging-derived biomedical geometries.

机构信息

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA.

出版信息

Med Biol Eng Comput. 2009 Sep;47(9):989-99. doi: 10.1007/s11517-009-0501-9. Epub 2009 Jun 13.

Abstract

Efficient and accurate reconstruction of imaging-derived geometries and subsequent quality mesh generation are enabling technologies for both clinical and research simulations. A challenging part of this process is the introduction of computable, orthogonal boundary patches, namely, the outlets, into treed structures, such as vasculature, arterial or airway trees. We present efficient and robust algorithms for automatically identifying and truncating the outlets for complex geometries. Our approach is based on a conceptual decomposition of objects into tips, segments, and branches, where the tips determine the outlets. We define the tips by introducing a novel concept called the average interior center of curvature and identify the tips that are stable and noise resistant. We compute well-defined orthogonal planes, which truncate the tips into outlets. The rims of the outlets are connected into curves, and the outlets are then closed using Delaunay triangulation. We illustrate the effectiveness and robustness of our approach with a variety of complex lung and coronary artery geometries.

摘要

高效准确地重建成像衍生的几何形状,并随后生成高质量的网格,这是临床和研究模拟的两项关键技术。该过程的一个挑战是将可计算的正交边界补丁(即出口)引入到树状结构中,例如血管、动脉或气道树。我们提出了用于自动识别和截断复杂几何形状的出口的高效稳健算法。我们的方法基于将对象分解为尖端、段和分支的概念,其中尖端决定了出口。我们通过引入一个新的概念,即平均内部曲率中心,来定义尖端,并确定稳定且抗噪的尖端。我们计算定义良好的正交平面,将尖端截断为出口。出口的边缘连接成曲线,然后使用 Delaunay 三角剖分关闭出口。我们使用各种复杂的肺和冠状动脉几何形状来说明我们的方法的有效性和鲁棒性。

相似文献

1
Automatic identification and truncation of boundary outlets in complex imaging-derived biomedical geometries.
Med Biol Eng Comput. 2009 Sep;47(9):989-99. doi: 10.1007/s11517-009-0501-9. Epub 2009 Jun 13.
2
3
An Automatic 3-D Reconstruction of Coronary Arteries by Stereopsis.
J Med Syst. 2016 Apr;40(4):94. doi: 10.1007/s10916-016-0455-z. Epub 2016 Feb 10.
4
Robust and accurate coronary artery centerline extraction in CTA by combining model-driven and data-driven approaches.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):74-81. doi: 10.1007/978-3-642-40760-4_10.
5
3D modeling of coronary artery bifurcations from CTA and conventional coronary angiography.
Med Image Comput Comput Assist Interv. 2011;14(Pt 3):395-402. doi: 10.1007/978-3-642-23626-6_49.
6
CTA coronary labeling through efficient geodesics between trees using anatomy priors.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):521-8. doi: 10.1007/978-3-319-10470-6_65.
7
Robust shape regression for supervised vessel segmentation and its application to coronary segmentation in CTA.
IEEE Trans Med Imaging. 2011 Nov;30(11):1974-86. doi: 10.1109/TMI.2011.2160556. Epub 2011 Jun 23.
8
Coronary vessel trees from 3D imagery: a topological approach.
Med Image Anal. 2006 Aug;10(4):548-59. doi: 10.1016/j.media.2006.05.002. Epub 2006 Jun 22.
10
LOCAL ORTHOGONAL CUTTING METHOD FOR COMPUTING MEDIAL CURVES AND ITS BIOMEDICAL APPLICATIONS.
SIAM J Sci Comput. 2010 Mar 1;32(2):947-969. doi: 10.1137/090767170.

引用本文的文献

1
Automatic Radiographic Position Recognition from Image Frequency and Intensity.
J Healthc Eng. 2017;2017:2727686. doi: 10.1155/2017/2727686. Epub 2017 Sep 17.
2
A Bidirectional Coupling Procedure Applied to Multiscale Respiratory Modeling.
J Comput Phys. 2013 Jul;244. doi: 10.1016/j.jcp.2012.10.021.
3
Dynamic multiscale boundary conditions for 4D CT of healthy and emphysematous rats.
PLoS One. 2013 Jun 14;8(6):e65874. doi: 10.1371/journal.pone.0065874. Print 2013.
4
In situ casting and imaging of the rat airway tree for accurate 3D reconstruction.
Exp Lung Res. 2013 Aug;39(6):249-57. doi: 10.3109/01902148.2013.801535. Epub 2013 Jun 20.
5
Phase-contrast MRI and CFD modeling of apparent ³He gas flow in rat pulmonary airways.
J Magn Reson. 2012 Aug;221:129-38. doi: 10.1016/j.jmr.2012.05.007. Epub 2012 May 23.
6
Comparative computational modeling of airflows and vapor dosimetry in the respiratory tracts of rat, monkey, and human.
Toxicol Sci. 2012 Aug;128(2):500-16. doi: 10.1093/toxsci/kfs168. Epub 2012 May 12.
8
Adaptive generation of multimaterial grids from imaging data for biomedical Lagrangian fluid-structure simulations.
Biomech Model Mechanobiol. 2010 Apr;9(2):187-201. doi: 10.1007/s10237-009-0170-5. Epub 2009 Sep 2.

本文引用的文献

1
Efficient Skeletonization of Volumetric Objects.
IEEE Trans Vis Comput Graph. 1999 Jul;5(3):196-209. doi: 10.1109/2945.795212.
2
Variational Generation of Prismatic Boundary-Layer Meshes for Biomedical Computing.
Int J Numer Methods Eng. 2009 Aug 20;79(8):907-945. doi: 10.1002/nme.2583.
3
An anisotropic scale-invariant unstructured mesh generator suitable for volumetric imaging data.
J Comput Phys. 2009 Feb 20;228(3):619-640. doi: 10.1016/j.jcp.2008.09.030.
4
An automated self-similarity analysis of the pulmonary tree of the Sprague-Dawley rat.
Anat Rec (Hoboken). 2008 Dec;291(12):1628-48. doi: 10.1002/ar.20771.
5
Outflow boundary conditions for arterial networks with multiple outlets.
Ann Biomed Eng. 2008 Sep;36(9):1496-514. doi: 10.1007/s10439-008-9527-7. Epub 2008 Jul 9.
6
Validation of image-based method for extraction of coronary morphometry.
Ann Biomed Eng. 2008 Mar;36(3):356-68. doi: 10.1007/s10439-008-9443-x. Epub 2008 Jan 29.
7
Curve-skeleton properties, applications, and algorithms.
IEEE Trans Vis Comput Graph. 2007 May-Jun;13(3):530-548. doi: 10.1109/TVCG.2007.1002.
8
A hybrid one-dimensional/Womersley model of pulsatile blood flow in the entire coronary arterial tree.
Am J Physiol Heart Circ Physiol. 2007 Jun;292(6):H2623-33. doi: 10.1152/ajpheart.00987.2006. Epub 2007 Jan 5.
10
Structural morphology of renal vasculature.
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H296-309. doi: 10.1152/ajpheart.00814.2005. Epub 2006 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验