Kuprat Andrew P, Einstein Daniel R
Pacific Northwest National Laboratory, P.O. Box 999; MSIN P7-58, Richland, WA 99352.
J Comput Phys. 2009 Feb 20;228(3):619-640. doi: 10.1016/j.jcp.2008.09.030.
We present a boundary-fitted, scale-invariant unstructured tetrahedral mesh generation algorithm that enables registration of element size to local feature size. Given an input triangulated surface mesh, a feature size field is determined by casting rays normal to the surface and into the geometry and then performing gradient-limiting operations to enforce continuity of the resulting field. Surface mesh density is adjusted to be proportional to the feature size field and then a layered anisotropic volume mesh is generated. This mesh is "scale-invariant" in that roughly the same number of layers of mesh exist in mesh cross-sections, between a minimum scale size L(min) and a maximum scale size L(max). We illustrate how this field can be used to produce quality grids for computational fluid dynamics based simulations of challenging, topologically complex biological surfaces derived from magnetic resonance images. The algorithm is implemented in the Pacific Northwest National Laboratory (PNNL) version of the Los Alamos grid toolbox LaGriT[14]. Research funded by the National Heart and Blood Institute Award 1RO1HL073598-01A1.
我们提出了一种边界拟合、尺度不变的非结构化四面体网格生成算法,该算法能够使单元尺寸与局部特征尺寸对齐。给定一个输入的三角化表面网格,通过向表面法线方向并向几何体内投射光线,然后执行梯度限制操作以确保所得场的连续性,从而确定一个特征尺寸场。将表面网格密度调整为与特征尺寸场成比例,然后生成分层各向异性体网格。该网格是“尺度不变的”,因为在最小尺度尺寸L(min)和最大尺度尺寸L(max)之间的网格横截面中存在大致相同数量的网格层。我们说明了如何使用该场为基于计算流体动力学的、源自磁共振图像的具有挑战性的拓扑复杂生物表面模拟生成高质量网格。该算法在洛斯阿拉莫斯网格工具箱LaGriT的太平洋西北国家实验室(PNNL)版本中实现[14]。研究由国家心脏和血液研究所奖1RO1HL073598-01A1资助。