McMullan G, Faruqi A R, Henderson R, Guerrini N, Turchetta R, Jacobs A, van Hoften G
MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB20QH, UK.
Ultramicroscopy. 2009 Aug;109(9):1144-7. doi: 10.1016/j.ultramic.2009.05.005. Epub 2009 May 18.
The advantages of backthinning monolithic active pixel sensors (MAPS) based on complementary metal oxide semiconductor (CMOS) direct electron detectors for electron microscopy have been discussed previously; they include better spatial resolution (modulation transfer function or MTF) and efficiency at all spatial frequencies (detective quantum efficiency or DQE). It was suggested that a 'thin' CMOS detector would have the most outstanding properties [1-3] because of a reduction in the proportion of backscattered electrons. In this paper we show, theoretically (using Monte Carlo simulations of electron trajectories) and experimentally that this is indeed the case. The modulation transfer functions of prototype backthinned CMOS direct electron detectors have been measured at 300keV. At zero spatial frequency, in non-backthinned 700-mum-thick detectors, the backscattered component makes up over 40% of the total signal but, by backthinning to 100, 50 or 35mum, this can be reduced to 25%, 15% and 10%, respectively. For the 35mum backthinned detector, this reduction in backscatter increases the MTF by 40% for spatial frequencies between 0.1 and 1.0 Nyquist. As discussed in the main text, reducing backscattering in backthinned detectors should also improve DQE.
基于互补金属氧化物半导体(CMOS)直接电子探测器的背减薄单片有源像素传感器(MAPS)在电子显微镜中的优势此前已有讨论;这些优势包括在所有空间频率下具有更好的空间分辨率(调制传递函数或MTF)和效率(探测量子效率或DQE)。有人提出,“薄型”CMOS探测器由于背散射电子比例降低,将具有最出色的性能[1 - 3]。在本文中,我们通过理论(使用电子轨迹的蒙特卡罗模拟)和实验表明情况确实如此。已在300keV下测量了原型背减薄CMOS直接电子探测器的调制传递函数。在零空间频率时,对于未背减薄的700μm厚探测器,背散射分量占总信号的40%以上,但通过背减薄至100μm、50μm或35μm,这一比例可分别降至25%、15%和10%。对于35μm背减薄探测器,背散射的这种减少使0.1至1.0奈奎斯特空间频率之间的MTF提高了40%。如正文所述,减少背减薄探测器中的背散射也应提高DQE。