Suppr超能文献

嗜热栖热菌DNA聚合酶Dpo4错配中的结构-功能关系:鸟嘌呤N2,N2-二甲基取代产生无活性和错配的聚合酶复合物。

Structure-function relationships in miscoding by Sulfolobus solfataricus DNA polymerase Dpo4: guanine N2,N2-dimethyl substitution produces inactive and miscoding polymerase complexes.

作者信息

Zhang Huidong, Eoff Robert L, Kozekov Ivan D, Rizzo Carmelo J, Egli Martin, Guengerich F Peter

机构信息

Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA.

出版信息

J Biol Chem. 2009 Jun 26;284(26):17687-99. doi: 10.1074/jbc.M109014274.

Abstract

Previous work has shown that Y-family DNA polymerases tolerate large DNA adducts, but a substantial decrease in catalytic efficiency and fidelity occurs during bypass of N2,N2-dimethyl (Me2)-substituted guanine (N2,N2-Me2G), in contrast to a single methyl substitution. Therefore, it is unclear why the addition of two methyl groups is so disruptive. The presence of N2,N2-Me2G lowered the catalytic efficiency of the model enzyme Sulfolobus solfataricus Dpo4 16,000-fold. Dpo4 inserted dNTPs almost at random during bypass of N2,N2-Me2G, and much of the enzyme was kinetically trapped by an inactive ternary complex when N2,N2-Me2G was present, as judged by a reduced burst amplitude (5% of total enzyme) and kinetic modeling. One crystal structure of Dpo4 with a primer having a 3'-terminal dideoxycytosine (Cdd) opposite template N2,N2-Me2G in a post-insertion position showed Cdd folded back into the minor groove, as a catalytically incompetent complex. A second crystal had two unique orientations for the primer terminal Cdd as follows: (i) flipped into the minor groove and (ii) a long pairing with N2,N2-Me2G in which one hydrogen bond exists between the O-2 atom of Cdd and the N-1 atom of N2,N2-Me2G, with a second water-mediated hydrogen bond between the N-3 atom of Cdd and the O-6 atom of N2,N2-Me2G. A crystal structure of Dpo4 with dTTP opposite template N2,N2-Me2G revealed a wobble orientation. Collectively, these results explain, in a detailed manner, the basis for the reduced efficiency and fidelity of Dpo4-catalyzed bypass of N2,N2-Me2G compared with mono-substituted N2-alkyl G adducts.

摘要

先前的研究表明,Y家族DNA聚合酶能够耐受大的DNA加合物,但与单个甲基取代相比,在绕过N2,N2-二甲基(Me2)取代的鸟嘌呤(N2,N2-Me2G)时,催化效率和保真度会大幅下降。因此,尚不清楚为何添加两个甲基会造成如此大的破坏。N2,N2-Me2G的存在使模型酶嗜热栖热菌Dpo4的催化效率降低了16000倍。在绕过N2,N2-Me2G的过程中,Dpo4几乎随机插入dNTP,并且当存在N2,N2-Me2G时,许多酶在动力学上被无活性的三元复合物捕获,这可通过降低的爆发幅度(占总酶的5%)和动力学建模来判断。Dpo4与在插入后位置与模板N2,N2-Me2G相对的具有3'-末端双脱氧胞嘧啶(Cdd)的引物的一个晶体结构显示,Cdd折叠回小沟,形成催化无活性的复合物。第二个晶体中引物末端Cdd有两个独特的取向:(i)翻转到小沟中,以及(ii)与N2,N2-Me2G形成长配对,其中Cdd的O-2原子与N2,N2-Me2G的N-1原子之间存在一个氢键,Cdd的N-3原子与N2,N2-Me2G的O-6原子之间存在第二个水介导的氢键。Dpo4与dTTP相对模板N2,N2-Me2G的晶体结构显示出摆动取向。总体而言,这些结果详细解释了与单取代的N2-烷基G加合物相比,Dpo4催化绕过N2,N2-Me2G时效率和保真度降低的基础。

相似文献

2
6
Insights into the mismatch discrimination mechanism of Y-family DNA polymerase Dpo4.
Biochem J. 2021 May 14;478(9):1769-1781. doi: 10.1042/BCJ20210162.
10

引用本文的文献

2
Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.
Mutat Res Rev Mutat Res. 2016 Apr-Jun;768:53-67. doi: 10.1016/j.mrrev.2016.03.006. Epub 2016 Apr 7.
3
Kinetic analysis of bypass of 7,8-dihydro-8-oxo-2'-deoxyguanosine by the catalytic core of yeast DNA polymerase η.
Biochimie. 2016 Feb;121:161-9. doi: 10.1016/j.biochi.2015.12.009. Epub 2015 Dec 15.
4
Translesion DNA Synthesis.
EcoSal Plus. 2012 Nov;5(1). doi: 10.1128/ecosalplus.7.2.2.
5
Polymerase Bypass of N(6)-Deoxyadenosine Adducts Derived from Epoxide Metabolites of 1,3-Butadiene.
Chem Res Toxicol. 2015 Jul 20;28(7):1496-507. doi: 10.1021/acs.chemrestox.5b00166. Epub 2015 Jul 6.
7
Recent insight into the kinetic mechanisms and conformational dynamics of Y-Family DNA polymerases.
Biochemistry. 2014 May 6;53(17):2804-14. doi: 10.1021/bi5000405. Epub 2014 Apr 23.
8
9
Metal-ion dependence of the active-site conformation of the translesion DNA polymerase Dpo4 from Sulfolobus solfataricus.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2010 Sep 1;66(Pt 9):1013-8. doi: 10.1107/S1744309110029374. Epub 2010 Aug 21.
10
Structural diversity of the Y-family DNA polymerases.
Biochim Biophys Acta. 2010 May;1804(5):1124-35. doi: 10.1016/j.bbapap.2010.01.020. Epub 2010 Feb 1.

本文引用的文献

1
3
Lesion bypass of N2-ethylguanine by human DNA polymerase iota.
J Biol Chem. 2009 Jan 16;284(3):1732-40. doi: 10.1074/jbc.M807296200. Epub 2008 Nov 3.
4
Kinetic analysis of translesion synthesis opposite bulky N2- and O6-alkylguanine DNA adducts by human DNA polymerase REV1.
J Biol Chem. 2008 Aug 29;283(35):23645-55. doi: 10.1074/jbc.M801686200. Epub 2008 Jun 30.
5
Role of induced fit in enzyme specificity: a molecular forward/reverse switch.
J Biol Chem. 2008 Sep 26;283(39):26297-301. doi: 10.1074/jbc.R800034200. Epub 2008 Jun 10.
9
Importance of hydrogen bonding for efficiency and specificity of the human mitochondrial DNA polymerase.
J Biol Chem. 2008 May 23;283(21):14402-10. doi: 10.1074/jbc.M705007200. Epub 2007 Jul 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验