Suppr超能文献

ATP水平扰动对深红红螺菌中固氮酶活性及调控的影响。

Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum.

作者信息

Zhang Yaoping, Pohlmann Edward L, Roberts Gary P

机构信息

Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.

出版信息

J Bacteriol. 2009 Sep;191(17):5526-37. doi: 10.1128/JB.00585-09. Epub 2009 Jun 19.

Abstract

Nitrogenase activity in Rhodospirillum rubrum and in some other photosynthetic bacteria is regulated in part by the availability of light. This regulation is through a posttranslational modification system that is itself regulated by P(II) homologs in the cell. P(II) is one of the most broadly distributed regulatory proteins in nature and directly or indirectly senses nitrogen and carbon signals in the cell. However, its possible role in responding to light availability remains unclear. Because P(II) binds ATP, we tested the hypothesis that removal of light would affect P(II) by changing intracellular ATP levels, and this in turn would affect the regulation of nitrogenase activity. This in vivo test involved a variety of different methods for the measurement of ATP, as well as the deliberate perturbation of intracellular ATP levels by chemical and genetic means. To our surprise, we found fairly normal levels of nitrogenase activity and posttranslational regulation of nitrogenase even under conditions of drastically reduced ATP levels. This indicates that low ATP levels have no more than a modest impact on the P(II)-mediated regulation of NifA activity and on the posttranslational regulation of nitrogenase activity. The relatively high nitrogenase activity also shows that the ATP-dependent electron flux from dinitrogenase reductase to dinitrogenase is also surprisingly insensitive to a depleted ATP level. These in vivo results disprove the simple model of ATP as the key energy signal to P(II) under these conditions. We currently suppose that the ratio of ADP/ATP might be the relevant signal, as suggested by a number of recent in vitro analyses.

摘要

深红红螺菌及其他一些光合细菌中的固氮酶活性部分受光照可利用性的调节。这种调节是通过一种翻译后修饰系统进行的,而该系统本身又受细胞中P(II)同源物的调控。P(II)是自然界中分布最广泛的调节蛋白之一,可直接或间接感知细胞中的氮和碳信号。然而,其在响应光照可利用性方面可能发挥的作用仍不清楚。由于P(II)能结合ATP,我们测试了这样一个假设:去除光照会通过改变细胞内ATP水平来影响P(II),进而影响固氮酶活性的调节。这项体内试验涉及多种不同的ATP测量方法,以及通过化学和基因手段有意扰动细胞内ATP水平。令我们惊讶的是,我们发现即使在ATP水平大幅降低的情况下,固氮酶活性及固氮酶的翻译后调节仍处于相当正常的水平。这表明低ATP水平对P(II)介导的NifA活性调节以及固氮酶活性的翻译后调节的影响不大。相对较高的固氮酶活性还表明,从固氮酶还原酶到固氮酶的依赖ATP的电子通量对ATP水平降低也出奇地不敏感。这些体内实验结果推翻了在这些条件下ATP作为向P(II)传递关键能量信号的简单模型。正如最近一些体外分析所表明的,我们目前推测ADP/ATP的比率可能是相关信号。

相似文献

1
Effect of perturbation of ATP level on the activity and regulation of nitrogenase in Rhodospirillum rubrum.
J Bacteriol. 2009 Sep;191(17):5526-37. doi: 10.1128/JB.00585-09. Epub 2009 Jun 19.
6
Effect of pyruvate on the metabolic regulation of nitrogenase activity in Rhodospirillum rubrum in darkness.
Microbiology (Reading). 2011 Jun;157(Pt 6):1834-1840. doi: 10.1099/mic.0.045831-0. Epub 2011 Mar 10.
8
Posttranslational modification of dinitrogenase reductase in Rhodospirillum rubrum treated with fluoroacetate.
World J Microbiol Biotechnol. 2018 Nov 28;34(12):184. doi: 10.1007/s11274-018-2564-y.
10
Effect of an ntrBC mutation on the posttranslational regulation of nitrogenase activity in Rhodospirillum rubrum.
J Bacteriol. 1995 Sep;177(18):5322-6. doi: 10.1128/jb.177.18.5322-5326.1995.

引用本文的文献

1
Nutrient-sensing mechanisms across evolution.
Cell. 2015 Mar 26;161(1):67-83. doi: 10.1016/j.cell.2015.02.041.
3
P(II) signal transduction proteins are ATPases whose activity is regulated by 2-oxoglutarate.
Proc Natl Acad Sci U S A. 2013 Aug 6;110(32):12948-53. doi: 10.1073/pnas.1304386110. Epub 2013 Jul 1.
4
The poor growth of Rhodospirillum rubrum mutants lacking RubisCO is due to the accumulation of ribulose-1,5-bisphosphate.
J Bacteriol. 2011 Jul;193(13):3293-303. doi: 10.1128/JB.00265-11. Epub 2011 Apr 29.
5
Elimination of Rubisco alters the regulation of nitrogenase activity and increases hydrogen production in Rhodospirillum rubrum.
Int J Hydrogen Energy. 2010 Jul 1;35(14):7377-7385. doi: 10.1016/j.ijhydene.2010.04.183.
6
Control of AmtB-GlnK complex formation by intracellular levels of ATP, ADP, and 2-oxoglutarate.
J Biol Chem. 2010 Oct 1;285(40):31037-45. doi: 10.1074/jbc.M110.153908. Epub 2010 Jul 18.

本文引用的文献

2
Structural biology of the purine biosynthetic pathway.
Cell Mol Life Sci. 2008 Nov;65(23):3699-724. doi: 10.1007/s00018-008-8295-8.
4
P(II) signal transducers: novel functional and structural insights.
Trends Microbiol. 2008 Feb;16(2):65-72. doi: 10.1016/j.tim.2007.11.004. Epub 2008 Jan 7.
7
The regulation of ion channels and transporters by glycolytically derived ATP.
Cell Mol Life Sci. 2007 Dec;64(23):3069-83. doi: 10.1007/s00018-007-7332-3.
8
Specificity and regulation of interaction between the PII and AmtB1 proteins in Rhodospirillum rubrum.
J Bacteriol. 2007 Oct;189(19):6861-9. doi: 10.1128/JB.00759-07. Epub 2007 Jul 20.
9
Membrane sequestration of PII proteins and nitrogenase regulation in the photosynthetic bacterium Rhodobacter capsulatus.
J Bacteriol. 2007 Aug;189(16):5850-9. doi: 10.1128/JB.00680-07. Epub 2007 Jun 22.
10
Nitrogen regulation in bacteria and archaea.
Annu Rev Microbiol. 2007;61:349-77. doi: 10.1146/annurev.micro.61.080706.093409.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验