Suppr超能文献

刺激无关的事件语义神经编码:来自跨句子 fMRI 解码的证据。

Stimulus-independent neural coding of event semantics: Evidence from cross-sentence fMRI decoding.

机构信息

School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.

School of Philosophy, Psychology & Language Sciences, University of Edinburgh, 7 George Square, Edinburgh, EH8 9JZ, UK.

出版信息

Neuroimage. 2021 Aug 1;236:118073. doi: 10.1016/j.neuroimage.2021.118073. Epub 2021 Apr 18.

Abstract

Multivariate neuroimaging studies indicate that the brain represents word and object concepts in a format that readily generalises across stimuli. Here we investigated whether this was true for neural representations of simple events described using sentences. Participants viewed sentences describing four events in different ways. Multivariate classifiers were trained to discriminate the four events using a subset of sentences, allowing us to test generalisation to novel sentences. We found that neural patterns in a left-lateralised network of frontal, temporal and parietal regions discriminated events in a way that generalised successfully over changes in the syntactic and lexical properties of the sentences used to describe them. In contrast, decoding in visual areas was sentence-specific and failed to generalise to novel sentences. In the reverse analysis, we tested for decoding of syntactic and lexical structure, independent of the event being described. Regions displaying this coding were limited and largely fell outside the canonical semantic network. Our results indicate that a distributed neural network represents the meaning of event sentences in a way that is robust to changes in their structure and form. They suggest that the semantic system disregards the surface properties of stimuli in order to represent their underlying conceptual significance.

摘要

多变量神经影像学研究表明,大脑以一种易于跨刺激物泛化的格式表示单词和对象概念。在这里,我们研究了使用句子描述的简单事件的神经表示是否也是如此。参与者以不同的方式观看了描述四个事件的句子。多元分类器使用句子的子集进行训练,以区分四个事件,从而可以测试对新句子的泛化。我们发现,左侧额、颞和顶叶区域的网络中的神经模式以一种成功泛化到用于描述它们的句子的句法和词汇特性变化的方式区分了事件。相比之下,视觉区域的解码是特定于句子的,无法泛化到新句子。在反向分析中,我们测试了句法和词汇结构的解码,而与描述的事件无关。显示这种编码的区域是有限的,并且主要落在经典语义网络之外。我们的结果表明,分布式神经网络以一种对其结构和形式变化具有鲁棒性的方式表示事件句子的含义。它们表明语义系统忽略了刺激的表面特性,以便表示其潜在的概念意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6fe/8270886/814c80bd647f/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验