Sherratt Jonathan A, Smith Matthew J, Rademacher Jens D M
Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):10890-5. doi: 10.1073/pnas.0900161106. Epub 2009 Jun 24.
In systems with cyclic dynamics, invasions often generate periodic spatiotemporal oscillations, which undergo a subsequent transition to chaos. The periodic oscillations have the form of a wavetrain and occur in a band of constant width. In applications, a key question is whether one expects spatiotemporal data to be dominated by regular or irregular oscillations or to involve a significant proportion of both. This depends on the width of the wavetrain band. Here, we present mathematical theory that enables the direct calculation of this width. Our method synthesizes recent developments in stability theory and computation. It is developed for only 1 equation system, but because this is a normal form close to a Hopf bifurcation, the results can be applied directly to a wide range of models. We illustrate this by considering a classic example from ecology: wavetrains in the wake of the invasion of a prey population by predators.
在具有循环动力学的系统中,入侵往往会产生周期性的时空振荡,随后这些振荡会过渡到混沌状态。周期性振荡具有波列的形式,并且在一个恒定宽度的频带内出现。在实际应用中,一个关键问题是人们是否预期时空数据主要由规则或不规则振荡主导,或者两者都占相当大的比例。这取决于波列频带的宽度。在此,我们提出了能够直接计算该宽度的数学理论。我们的方法综合了稳定性理论和计算方面的最新进展。它仅针对单个方程系统开发,但由于这是一个接近霍普夫分岔的范式,因此结果可直接应用于广泛的模型。我们通过考虑生态学中的一个经典例子来说明这一点:捕食者入侵猎物种群后产生的波列。