Suppr超能文献

地中海贻贝足丝中的超不稳定基质蛋白。

Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.

作者信息

Sagert Jason, Waite J Herbert

机构信息

Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.

出版信息

J Exp Biol. 2009 Jul;212(Pt 14):2224-36. doi: 10.1242/jeb.029686.

Abstract

The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain additional matrix components that separate and perhaps lubricate the collagenous microfibrils during deformation in tension. In this study, the thread matrix proteins (TMPs), a glycine-, tyrosine- and asparagine-rich protein family, were shown to possess unique repeated sequence motifs, significant transcriptional heterogeneity and were distributed throughout the byssal thread. Deamidation was shown to occur at a significant rate in a recombinant TMP and in the byssal thread as a function of time. Furthermore, charge heterogeneity presumably due to deamidation was observed in TMPs extracted from threads. The TMPs were localized to the preCOL-containing secretory granules in the collagen gland of the foot and are assumed to provide a viscoelastic matrix around the collagenous fibers in byssal threads.

摘要

海洋贻贝(Mytilus galloprovincialis)通过一种称为足丝的固着器附着在潮间带的岩石上。足丝起到减震器的作用,由丝线组成,其主要分子成分是含胶原蛋白的蛋白质(preCOLs),这些蛋白质在很大程度上决定了足丝的高阶自组装和机械性能。丝线还含有其他基质成分,在拉伸变形过程中可分离并可能润滑胶原微纤维。在本研究中,丝线基质蛋白(TMPs)是一个富含甘氨酸、酪氨酸和天冬酰胺的蛋白质家族,被证明具有独特的重复序列基序、显著的转录异质性,并且分布在整个足丝中。脱酰胺作用在重组TMP和足丝中均以显著速率随时间发生。此外,在从丝线中提取的TMPs中观察到了可能由于脱酰胺作用导致的电荷异质性。TMPs定位于足部胶原腺中含preCOL的分泌颗粒,并被认为在足丝的胶原纤维周围提供了一个粘弹性基质。

相似文献

1
Hyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.
J Exp Biol. 2009 Jul;212(Pt 14):2224-36. doi: 10.1242/jeb.029686.
3
Crystallization and preliminary X-ray diffraction analysis of proximal thread matrix protein 1 (PTMP1) from Mytilus galloprovincialis.
Acta Crystallogr F Struct Biol Commun. 2014 Jun;70(Pt 6):769-72. doi: 10.1107/S2053230X14006165. Epub 2014 May 10.
6
Perfluorooctanoate and nano titanium dioxide impair the byssus performance of the mussel Mytilus coruscus.
J Hazard Mater. 2024 May 5;469:134062. doi: 10.1016/j.jhazmat.2024.134062. Epub 2024 Mar 19.
7
The peculiar collagens of mussel byssus.
Matrix Biol. 1998 Jun;17(2):93-106. doi: 10.1016/s0945-053x(98)90023-3.
8
In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus.
J Proteomics. 2016 Jul 20;144:87-98. doi: 10.1016/j.jprot.2016.06.014. Epub 2016 Jun 15.
9
Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel.
Mar Biotechnol (NY). 2014 Apr;16(2):144-55. doi: 10.1007/s10126-013-9537-9. Epub 2013 Sep 24.
10
Near-future levels of ocean temperature weaken the byssus production and performance of the mussel Mytilus coruscus.
Sci Total Environ. 2020 Sep 1;733:139347. doi: 10.1016/j.scitotenv.2020.139347. Epub 2020 May 11.

引用本文的文献

2
Catechol redox maintenance in mussel adhesion.
Nat Rev Chem. 2025 Mar;9(3):159-172. doi: 10.1038/s41570-024-00673-4. Epub 2025 Jan 15.
3
Diversity and evolution of tyrosinase enzymes involved in the adhesive systems of mussels and tubeworms.
iScience. 2024 Nov 20;27(12):111443. doi: 10.1016/j.isci.2024.111443. eCollection 2024 Dec 20.
4
Protein-Based Biological Materials: Molecular Design and Artificial Production.
Chem Rev. 2023 Mar 8;123(5):2049-2111. doi: 10.1021/acs.chemrev.2c00621. Epub 2023 Jan 24.
5
Viscoelastic analysis of mussel threads reveals energy dissipative mechanisms.
J R Soc Interface. 2022 Mar;19(188):20210828. doi: 10.1098/rsif.2021.0828. Epub 2022 Mar 23.
6
8
A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.
J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0151.
10
Mussel adhesion - essential footwork.
J Exp Biol. 2017 Feb 15;220(Pt 4):517-530. doi: 10.1242/jeb.134056.

本文引用的文献

1
pH-dependent locking of giant mesogens in fibers drawn from mussel byssal collagens.
Biomacromolecules. 2008 May;9(5):1480-6. doi: 10.1021/bm8000827. Epub 2008 Apr 11.
4
Seasonal variation in mussel byssal thread mechanics.
J Exp Biol. 2006 May;209(Pt 10):1996-2003. doi: 10.1242/jeb.02234.
5
Giant bent-core mesogens in the thread forming process of marine mussels.
Biomacromolecules. 2004 Jul-Aug;5(4):1351-5. doi: 10.1021/bm049899t.
6
Exploring molecular and mechanical gradients in structural bioscaffolds.
Biochemistry. 2004 Jun 22;43(24):7653-62. doi: 10.1021/bi049380h.
7
Structure-dependent nonenzymatic deamidation of glutaminyl and asparaginyl pentapeptides.
J Pept Res. 2004 May;63(5):426-36. doi: 10.1111/j.1399-3011.2004.00151.x.
8
Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading.
Physiol Rev. 2004 Apr;84(2):649-98. doi: 10.1152/physrev.00031.2003.
10
Elastomeric gradients: a hedge against stress concentration in marine holdfasts?
Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):143-53. doi: 10.1098/rstb.2001.1025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验