Christian Doppler Laboratory for Ophthalmic Image Analysis Vienna Reading Center, Department of Ophthalmology, Medical University of Vienna Spitalgasse 23, AT-1090, Vienna, Austria.
Sci Rep. 2017 Jun 7;7(1):2928. doi: 10.1038/s41598-017-02971-y.
Vitreomacular adhesion (VMA) represents a prognostic biomarker in the management of exudative macular disease using anti-vascular endothelial growth factor (VEGF) agents. However, manual evaluation of VMA in 3D optical coherence tomography (OCT) is laborious and data on its impact on therapy of retinal vein occlusion (RVO) are limited. The aim of this study was to (1) develop a fully automated segmentation algorithm for the posterior vitreous boundary and (2) to study the effect of VMA on anti-VEGF therapy for RVO. A combined machine learning/graph cut segmentation algorithm for the posterior vitreous boundary was designed and evaluated. 391 patients with central/branch RVO under standardized ranibizumab treatment for 6/12 months were included in a systematic post-hoc analysis. VMA (70%) was automatically differentiated from non-VMA (30%) using the developed method combined with unsupervised clustering. In this proof-of-principle study, eyes with VMA showed larger BCVA gains than non-VMA eyes (BRVO: 15 ± 12 vs. 11 ± 11 letters, p = 0.02; CRVO: 18 ± 14 vs. 9 ± 13 letters, p < 0.01) and received a similar number of retreatments. However, this association diminished after adjustment for baseline BCVA, also when using more fine-grained VMA classes. Our study illustrates that machine learning represents a promising path to assess imaging biomarkers in OCT.
玻璃黄斑粘连(VMA)在使用抗血管内皮生长因子(VEGF)药物治疗渗出性黄斑疾病中是一种预后生物标志物。然而,3D 光学相干断层扫描(OCT)中 VMA 的手动评估非常繁琐,而且关于其对视网膜静脉阻塞(RVO)治疗影响的数据有限。本研究旨在:(1)开发一种用于后玻璃体边界的全自动分割算法;(2)研究 VMA 对 RVO 抗 VEGF 治疗的影响。设计并评估了一种用于后玻璃体边界的组合机器学习/图割分割算法。对 391 名接受标准化雷珠单抗治疗 6/12 个月的中心/分支 RVO 患者进行了系统的回顾性分析。使用开发的方法结合无监督聚类,将 VMA(70%)与非 VMA(30%)自动区分开来。在这项原理验证研究中,与非 VMA 眼相比,VMA 眼的 BCVA 增益更大(BRVO:15±12 与 11±11 个字母,p=0.02;CRVO:18±14 与 9±13 个字母,p<0.01),并且接受了相同数量的再治疗。然而,在调整基线 BCVA 后,这种相关性减弱,即使使用更精细的 VMA 分类也是如此。我们的研究表明,机器学习代表了评估 OCT 中成像生物标志物的一种很有前途的途径。