Suppr超能文献

DDEC:食管癌相关基因龙数据库。

DDEC: Dragon database of genes implicated in esophageal cancer.

作者信息

Essack Magbubah, Radovanovic Aleksandar, Schaefer Ulf, Schmeier Sebastian, Seshadri Sundararajan V, Christoffels Alan, Kaur Mandeep, Bajic Vladimir B

机构信息

South African National Bioinformatics Institute, University of the Western Cape, Bellville, South Africa.

出版信息

BMC Cancer. 2009 Jul 6;9:219. doi: 10.1186/1471-2407-9-219.

Abstract

BACKGROUND

Esophageal cancer ranks eighth in order of cancer occurrence. Its lethality primarily stems from inability to detect the disease during the early organ-confined stage and the lack of effective therapies for advanced-stage disease. Moreover, the understanding of molecular processes involved in esophageal cancer is not complete, hampering the development of efficient diagnostics and therapy. Efforts made by the scientific community to improve the survival rate of esophageal cancer have resulted in a wealth of scattered information that is difficult to find and not easily amendable to data-mining. To reduce this gap and to complement available cancer related bioinformatic resources, we have developed a comprehensive database (Dragon Database of Genes Implicated in Esophageal Cancer) with esophageal cancer related information, as an integrated knowledge database aimed at representing a gateway to esophageal cancer related data.

DESCRIPTION

Manually curated 529 genes differentially expressed in EC are contained in the database. We extracted and analyzed the promoter regions of these genes and complemented gene-related information with transcription factors that potentially control them. We further, precompiled text-mined and data-mined reports about each of these genes to allow for easy exploration of information about associations of EC-implicated genes with other human genes and proteins, metabolites and enzymes, toxins, chemicals with pharmacological effects, disease concepts and human anatomy. The resulting database, DDEC, has a useful feature to display potential associations that are rarely reported and thus difficult to identify. Moreover, DDEC enables inspection of potentially new 'association hypotheses' generated based on the precompiled reports.

CONCLUSION

We hope that this resource will serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in EC genetics. DDEC is freely accessible to academic and non-profit users at http://apps.sanbi.ac.za/ddec/. DDEC will be updated twice a year.

摘要

背景

食管癌在癌症发病率中排名第八。其致死率主要源于在早期局限于器官阶段无法检测到该疾病,以及晚期疾病缺乏有效治疗方法。此外,对食管癌所涉及分子过程的理解尚不完整,这阻碍了高效诊断和治疗方法的发展。科学界为提高食管癌存活率所做的努力产生了大量分散的信息,这些信息难以查找且不易进行数据挖掘。为了缩小这一差距并补充现有的癌症相关生物信息资源,我们开发了一个包含食管癌相关信息的综合数据库(食管癌相关基因龙数据库),作为一个综合知识数据库,旨在成为获取食管癌相关数据的门户。

描述

该数据库手动整理了529个在食管癌中差异表达的基因。我们提取并分析了这些基因的启动子区域,并用可能控制它们的转录因子补充了基因相关信息。我们还预先编译了关于这些基因中每一个的文本挖掘和数据挖掘报告,以便轻松探索与食管癌相关基因与其他人类基因和蛋白质、代谢物和酶、毒素、具有药理作用的化学物质、疾病概念和人体解剖学之间关联的信息。由此产生的数据库DDEC具有一个有用的功能,即显示很少被报道因而难以识别的潜在关联。此外,DDEC能够检查基于预先编译报告生成的潜在新“关联假设”。

结论

我们希望这个资源将作为现有公共资源的有益补充,为对食管癌遗传学感兴趣的研究人员和医生提供一个良好的起点。学术和非盈利用户可通过http://apps.sanbi.ac.za/ddec/免费访问DDEC。DDEC将每年更新两次。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d99/2711974/ea4e4bd2e329/1471-2407-9-219-1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验