Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School , Cambridge, MA, USA.
Tissue Eng Part C Methods. 2010 Feb;16(1):157-66. doi: 10.1089/ten.TEC.2009.0179.
The ability to bioengineer three-dimensional (3D) tissues is a potentially powerful approach to treat diverse diseases such as cancer, loss of tissue function, or organ failure. Traditional tissue engineering methods, however, face challenges in fabricating 3D tissue constructs that resemble the native tissue microvasculature and microarchitectures. We have developed a bioprinter that can be used to print 3D patches of smooth muscle cells (5 mm x 5 mm x 81 microm) encapsulated within collagen. Current inkjet printing systems suffer from loss of cell viability and clogging. To overcome these limitations, we developed a system that uses mechanical valves to print high viscosity hydrogel precursors containing cells. The bioprinting platform that we developed enables (i) printing of multilayered 3D cell-laden hydrogel structures (16.2 microm thick per layer) with controlled spatial resolution (proximal axis: 18.0 +/- 7.0 microm and distal axis: 0.5 +/- 4.9 microm), (ii) high-throughput droplet generation (1 s per layer, 160 droplets/s), (iii) cell seeding uniformity (26 +/- 2 cells/mm(2) at 1 million cells/mL, 122 +/- 20 cells/mm(2) at 5 million cells/mL, and 216 +/- 38 cells/mm(2) at 10 million cells/mL), and (iv) long-term viability in culture (>90%, 14 days). This platform to print 3D tissue constructs may be beneficial for regenerative medicine applications by enabling the fabrication of printed replacement tissues.
生物工程三维(3D)组织的能力是治疗多种疾病的一种潜在强大方法,例如癌症、组织功能丧失或器官衰竭。然而,传统的组织工程方法在制造类似于天然组织微血管和微观结构的 3D 组织构建体方面面临挑战。我们开发了一种生物打印机,可以用于打印包封在胶原蛋白中的平滑肌细胞(5 毫米 x 5 毫米 x 81 微米)的 3D 贴片。目前的喷墨打印系统存在细胞活力丧失和堵塞的问题。为了克服这些限制,我们开发了一种使用机械阀来打印含有细胞的高粘度水凝胶前体的系统。我们开发的生物打印平台能够(i)打印具有受控空间分辨率的多层 3D 细胞负载水凝胶结构(每层 16.2 微米厚)(近端轴:18.0 +/- 7.0 微米和远端轴:0.5 +/- 4.9 微米),(ii)高通量液滴生成(每层 1 秒,160 个液滴/秒),(iii)细胞接种均匀性(在 100 万个细胞/mL 时为 26 +/- 2 个细胞/mm²,在 500 万个细胞/mL 时为 122 +/- 20 个细胞/mm²,在 1000 万个细胞/mL 时为 216 +/- 38 个细胞/mm²),以及(iv)在培养中具有长期活力(>90%,14 天)。这种打印 3D 组织构建体的平台通过能够制造印刷替代组织,可能有益于再生医学应用。