Suppr超能文献

行为猕猴初级视觉皮层中上下文交互的光学成像。

Optical imaging of contextual interactions in V1 of the behaving monkey.

作者信息

Kinoshita Masaharu, Gilbert Charles D, Das Aniruddha

机构信息

The Rockefeller University, New York, NY 10032, USA.

出版信息

J Neurophysiol. 2009 Sep;102(3):1930-44. doi: 10.1152/jn.90882.2008. Epub 2009 Jul 8.

Abstract

Interactions in primary visual cortex (V1) between simple visual elements such as short bar segments are believed to underlie our ability to easily integrate contours and segment surfaces. We used intrinsic signal optical imaging in alert fixating macaques to measure the strength and cortical distribution of V1 interactions among collinear bars. A single short bar stimulus produced a broad-peaked hill of activation (the optical point spread) covering multiple orientation hypercolumns in V1. Flanking the bar stimulus with a pair of identical collinear bars led to a strong nonlinear suppression in the optical signal. This nonlinearity was strongest over the center bar region, with a spatial distribution that cannot be explained by a simple gain control. It was a function of the relative orientation and separation of the bar stimuli in a manner tuned sharply for collinearity, being strongest for immediately adjacent bars lying on a smooth contour. These results suggest intracortical interactions playing a major role in determining V1 activation by smooth extended contours. Our finding that the interaction is primarily suppressive when imaged optically, which presumably reflects the combined inhibitory and excitatory inputs, suggests a complex interplay between these cortical inputs leading to the collinear facilitation seen in the spiking response of V1 neurons. This disjuncture between the facilitation seen in spiking and the suppression in imaging also suggests that cortical representations of complex stimuli involve interactions that need to be studied over extended networks and may be hard to deduce from the responses of individual neurons.

摘要

初级视觉皮层(V1)中简单视觉元素(如短条形段)之间的相互作用被认为是我们能够轻松整合轮廓和分割表面的能力的基础。我们在警觉注视的猕猴中使用内在信号光学成像来测量共线条形之间V1相互作用的强度和皮层分布。单个短条形刺激产生了一个覆盖V1中多个方位超柱的宽峰激活丘(光学点扩散)。在条形刺激两侧放置一对相同的共线条形会导致光信号的强烈非线性抑制。这种非线性在中心条形区域最强,其空间分布无法用简单的增益控制来解释。它是条形刺激的相对方位和间隔的函数,以一种对共线性进行尖锐调谐的方式,对于位于平滑轮廓上的紧邻条形最强。这些结果表明皮质内相互作用在通过平滑延伸轮廓确定V1激活中起主要作用。我们的发现是,当进行光学成像时,这种相互作用主要是抑制性的,这大概反映了抑制性和兴奋性输入的组合,这表明这些皮质输入之间存在复杂的相互作用,导致在V1神经元的尖峰反应中看到共线促进作用。在尖峰中看到的促进作用与成像中的抑制作用之间的这种脱节也表明,复杂刺激的皮质表征涉及需要在扩展网络上进行研究的相互作用,并且可能难以从单个神经元的反应中推断出来。

相似文献

1
Optical imaging of contextual interactions in V1 of the behaving monkey.
J Neurophysiol. 2009 Sep;102(3):1930-44. doi: 10.1152/jn.90882.2008. Epub 2009 Jul 8.
2
Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model.
J Neurosci. 2018 Nov 21;38(47):10069-10079. doi: 10.1523/JNEUROSCI.0246-18.2018. Epub 2018 Oct 3.
4
Corticocortical feedback contributes to surround suppression in V1 of the alert primate.
J Neurosci. 2013 May 8;33(19):8504-17. doi: 10.1523/JNEUROSCI.5124-12.2013.
5
The role of V1 surround suppression in MT motion integration.
J Neurophysiol. 2010 Jun;103(6):3123-38. doi: 10.1152/jn.00654.2009. Epub 2010 Mar 24.
6
Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
Neuron. 2018 Dec 19;100(6):1504-1512.e4. doi: 10.1016/j.neuron.2018.10.020. Epub 2018 Nov 1.
7
Excitatory and suppressive receptive field subunits in awake monkey primary visual cortex (V1).
Proc Natl Acad Sci U S A. 2007 Nov 27;104(48):19120-5. doi: 10.1073/pnas.0706938104. Epub 2007 Nov 15.
8
How selective are V1 cells for pop-out stimuli?
J Neurosci. 2003 Nov 5;23(31):9968-80. doi: 10.1523/JNEUROSCI.23-31-09968.2003.
9
Visual responses in monkey areas V1 and V2 to three-dimensional surface configurations.
J Neurosci. 2000 Nov 1;20(21):8188-98. doi: 10.1523/JNEUROSCI.20-21-08188.2000.

引用本文的文献

1
Topographic signatures of global object perception in human visual cortex.
Neuroimage. 2020 Oct 15;220:116926. doi: 10.1016/j.neuroimage.2020.116926. Epub 2020 May 19.
2
Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model.
J Neurosci. 2018 Nov 21;38(47):10069-10079. doi: 10.1523/JNEUROSCI.0246-18.2018. Epub 2018 Oct 3.
3
Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2.
Eye Brain. 2017 Apr 11;9:1-12. doi: 10.2147/EB.S105609. eCollection 2017.
5
Posterior-Anterior Brain Maturation Reflected in Perceptual, Motor and Cognitive Performance.
Front Psychol. 2017 May 2;8:674. doi: 10.3389/fpsyg.2017.00674. eCollection 2017.
6
Effects of Spatial Frequency Similarity and Dissimilarity on Contour Integration.
PLoS One. 2015 Jun 9;10(6):e0126449. doi: 10.1371/journal.pone.0126449. eCollection 2015.
8
Coaxial anisotropy of cortical point spread in human visual areas.
J Neurosci. 2013 Jan 16;33(3):1143-56a. doi: 10.1523/JNEUROSCI.2404-12.2013.
9
Associative fear learning enhances sparse network coding in primary sensory cortex.
Neuron. 2012 Jul 12;75(1):121-32. doi: 10.1016/j.neuron.2012.04.035.
10
Cortical topography of intracortical inhibition influences the speed of decision making.
Proc Natl Acad Sci U S A. 2012 Feb 21;109(8):3107-12. doi: 10.1073/pnas.1114250109. Epub 2012 Feb 6.

本文引用的文献

1
Long-term optical imaging of intrinsic signals in anesthetized and awake monkeys.
Appl Opt. 2007 Apr 1;46(10):1872-80. doi: 10.1364/ao.46.001872.
2
Optical imaging of contrast response in Macaque monkey V1 and V2.
Cereb Cortex. 2007 Nov;17(11):2675-95. doi: 10.1093/cercor/bhl177. Epub 2007 Jan 30.
3
Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals.
J Neurophysiol. 2005 Oct;94(4):2748-62. doi: 10.1152/jn.00354.2005. Epub 2005 Jul 6.
4
Physical limits to spatial resolution of optical recording: clarifying the spatial structure of cortical hypercolumns.
Proc Natl Acad Sci U S A. 2005 Mar 15;102(11):4158-63. doi: 10.1073/pnas.0500291102. Epub 2005 Mar 3.
5
Stimulation of non-classical receptive field enhances orientation selectivity in the cat.
J Physiol. 2005 Apr 1;564(Pt 1):233-43. doi: 10.1113/jphysiol.2004.080051. Epub 2005 Jan 27.
6
Perceptual learning and top-down influences in primary visual cortex.
Nat Neurosci. 2004 Jun;7(6):651-7. doi: 10.1038/nn1255. Epub 2004 May 23.
7
Contrast invariance of functional maps in cat primary visual cortex.
J Vis. 2004 Mar 12;4(3):130-43. doi: 10.1167/4.3.1.
8
Functional architecture of eye position gain fields in visual association cortex of behaving monkey.
J Neurophysiol. 2003 Aug;90(2):1279-94. doi: 10.1152/jn.01179.2002. Epub 2003 Apr 2.
9
Lateral connectivity and contextual interactions in macaque primary visual cortex.
Neuron. 2002 Nov 14;36(4):739-50. doi: 10.1016/s0896-6273(02)01029-2.
10
Global contour saliency and local colinear interactions.
J Neurophysiol. 2002 Nov;88(5):2846-56. doi: 10.1152/jn.00289.2002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验