Iacovelli Jared, Mlodnicka Agnieska E, Veldman Peter, Ying Gui-Shuang, Dunaief Joshua L, Schumacher Armin
F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, 305 Stellar-Chance Labs, 422 Curie Blvd, Philadelphia, PA 19104, USA.
Brain Res. 2009 Sep 15;1289:85-95. doi: 10.1016/j.brainres.2009.06.098. Epub 2009 Jul 9.
Disruption of iron homeostasis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostasis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wild-type levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wild-type by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health.
中枢神经系统(CNS)内铁稳态的破坏可导致哺乳动物在发育和衰老过程中出现严重异常。辐射诱导的红细胞增多症(Pcm)突变是铁转运蛋白1(Fpn1)启动子区域的一个58碱基对的微缺失,它破坏了这种关键铁转运蛋白的转录和转录后调控。这种调节性突变会引起外周铁稳态的动态变化,使得新生的纯合Pcm小鼠表现出缺铁性贫血,十二指肠Fpn1表达增加,而成年纯合子尽管机体铁过载,但Fpn1表达降低且出现贫血。在此,我们报告了Pcm微缺失对中枢神经系统两个部分(脑和视网膜)铁稳态的影响。出生时,Pcm纯合子脑铁含量显著降低,Fpn1表达水平也降低。脑微血管中转铁蛋白受体1(TfR1)的上调似乎介导了出生后发育过程中的代偿性铁摄取,Pcm脑内的铁含量在7周龄时恢复到野生型水平。同样,表达变化是短暂的,到12周龄时,Pcm纯合子和野生型之间Fpn1和TfR1的表达没有区别。令人惊讶的是,成年Pcm脑有效地免受外周铁过载的影响,并维持正常的铁含量。与围产期脑内Fpn1下调相反,Pcm纯合子的视网膜显示Fpn1表达水平升高。虽然出生时和出生后早期视网膜形态看起来正常,但成年Pcm小鼠表现出明显的、与年龄相关的光感受器丧失。这种表型证明了铁稳态在视网膜健康中的重要性。