He Xining, Hahn Paul, Iacovelli Jared, Wong Robert, King Chih, Bhisitkul Robert, Massaro-Giordano Mina, Dunaief Joshua L
F.M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, 305 Stellar-Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
Prog Retin Eye Res. 2007 Nov;26(6):649-73. doi: 10.1016/j.preteyeres.2007.07.004. Epub 2007 Aug 11.
Iron is essential for many metabolic processes but can also cause damage. As a potent generator of hydroxyl radical, the most reactive of the free radicals, iron can cause considerable oxidative stress. Since iron is absorbed through diet but not excreted except through menstruation, total body iron levels buildup with age. Macular iron levels increase with age, in both men and women. This iron has the potential to contribute to retinal degeneration. Here we present an overview of the evidence suggesting that iron may contribute to retinal degenerations. Intraocular iron foreign bodies cause retinal degeneration. Retinal iron buildup resulting from hereditary iron homeostasis disorders aceruloplasminemia, Friedreich's ataxia, and panthothenate kinase-associated neurodegeneration cause retinal degeneration. Mice with targeted mutation of the iron exporter ceruloplasmin have age-dependent retinal iron overload and a resulting retinal degeneration with features of age-related macular degeneration (AMD). Post mortem retinas from patients with AMD have more iron and the iron carrier transferrin than age-matched controls. Over the past 10 years much has been learned about the intricate network of proteins involved in iron handling. Many of these, including transferrin, transferrin receptor, divalent metal transporter-1, ferritin, ferroportin, ceruloplasmin, hephaestin, iron-regulatory protein, and histocompatibility leukocyte antigen class I-like protein involved in iron homeostasis (HFE) have been found in the retina. Some of these proteins have been found in the cornea and lens as well. Levels of the iron carrier transferrin are high in the aqueous and vitreous humors. The functions of these proteins in other tissues, combined with studies on cultured ocular tissues, genetically engineered mice, and eye exams on patients with hereditary iron diseases provide clues regarding their ocular functions. Iron may play a role in a broad range of ocular diseases, including glaucoma, cataract, AMD, and conditions causing intraocular hemorrhage. While iron deficiency must be prevented, the therapeutic potential of limiting iron-induced ocular oxidative damage is high. Systemic, local, or topical iron chelation with an expanding repertoire of drugs has clinical potential.
铁对许多代谢过程至关重要,但也可能造成损害。作为最具活性的自由基——羟基自由基的强效生成剂,铁可导致相当程度的氧化应激。由于铁通过饮食吸收,且除月经外不会排出体外,因此体内铁水平会随着年龄增长而累积。无论男性还是女性,黄斑部铁水平都会随年龄增长而升高。这种铁有可能导致视网膜变性。在此,我们概述了表明铁可能导致视网膜变性的证据。眼内铁异物会导致视网膜变性。由遗传性铁稳态失调(无铜蓝蛋白血症、弗里德赖希共济失调和泛酸激酶相关神经变性)引起的视网膜铁蓄积会导致视网膜变性。铁输出蛋白铜蓝蛋白靶向突变的小鼠存在年龄依赖性视网膜铁过载,并由此导致具有年龄相关性黄斑变性(AMD)特征的视网膜变性。AMD患者的死后视网膜比年龄匹配的对照组含有更多的铁和铁载体转铁蛋白。在过去10年里,人们对参与铁处理的复杂蛋白质网络有了很多了解。其中许多蛋白质,包括转铁蛋白、转铁蛋白受体、二价金属转运体1、铁蛋白、铁转运蛋白、铜蓝蛋白、高铁血红蛋白、铁调节蛋白以及参与铁稳态的组织相容性白细胞抗原I类样蛋白(HFE),都已在视网膜中被发现。其中一些蛋白质在角膜和晶状体中也有发现。铁载体转铁蛋白在房水和玻璃体液中的水平很高。这些蛋白质在其他组织中的功能,结合对培养的眼组织、基因工程小鼠的研究以及对遗传性铁疾病患者的眼部检查,为它们的眼部功能提供了线索。铁可能在广泛的眼部疾病中起作用,包括青光眼、白内障、AMD以及导致眼内出血的病症。虽然必须预防缺铁,但限制铁诱导的眼部氧化损伤的治疗潜力很大。使用越来越多的药物进行全身、局部或局部铁螯合具有临床潜力。